+
X
Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Higgs inflation, vacuum stability, and leptogenesis

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 17 August 2020
  • Volume 2020, article number 72, (2020)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
Higgs inflation, vacuum stability, and leptogenesis
Download PDF
  • Neil D. Barrie1,
  • Akio Sugamoto2,3,
  • Tatsu Takeuchi4 &
  • …
  • Kimiko Yamashita5,6 
  • 427 Accesses

  • 10 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We consider the introduction of a complex scalar field carrying a global lepton number charge to the Standard Model and the Higgs inflation framework. The conditions are investigated under which this model can simultaneously ensure Higgs vacuum stability up to the Planck scale, successful inflation, non-thermal Leptogenesis via the pendulum mechanism, and light neutrino masses. These can be simultaneously achieved when the scalar lepton is minimally coupled to gravity, that is, when standard Higgs inflation and reheating proceed without the interference of the additional scalar degrees of freedom. If the scalar lepton also has a non-minimal coupling to gravity, a multi-field inflation scenario is induced, with interesting interplay between the successful inflation constraints and those from vacuum stability and Leptogenesis. The parameter region that can simultaneously achieve the above goals is explored.

Article PDF

Download to read the full article text

Similar content being viewed by others

MSSM-inspired multifield inflation

Article Open access 07 December 2017

The rise and fall of the Standard-Model Higgs: electroweak vacuum stability during kination

Article Open access 31 May 2024

Inflation and supersymmetry breaking in Higgs-R2 supergravity

Article Open access 21 October 2021

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Cosmology
  • Elementary Particles, Quantum Field Theory
  • Field Theory and Polynomials
  • Particle Physics
  • Theoretical Particle Physics
  • Macroeconomics and Monetary Economics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. T. Takeuchi, A. Minamizaki and A. Sugamoto, Ratchet Model of Baryogenesis, in Proceedings of International Workshop on Strong Coupling Gauge Theories in LHC Era: SCGT 09 Nagoya Japan (2011), pg. 378 [arXiv:1008.4515] [INSPIRE].

  2. K. Bamba, N.D. Barrie, A. Sugamoto, T. Takeuchi and K. Yamashita, Ratchet baryogenesis and an analogy with the forced pendulum, Mod. Phys. Lett. A 33 (2018) 1850097 [arXiv:1610.03268] [INSPIRE].

    ADS  Google Scholar 

  3. K. Bamba, N.D. Barrie, A. Sugamoto, T. Takeuchi and K. Yamashita, Pendulum Leptogenesis, Phys. Lett. B 785 (2018) 184 [arXiv:1805.04826] [INSPIRE].

    ADS  Google Scholar 

  4. M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].

    ADS  Google Scholar 

  5. A.D. Linde, Particle physics and inflationary cosmology, Contemp. Concepts Phys. 5 (1990) 1 [hep-th/0503203] [INSPIRE].

    Google Scholar 

  6. J.A. Dror, T. Hiramatsu, K. Kohri, H. Murayama and G. White, Testing the Seesaw Mechanism and Leptogenesis with Gravitational Waves, Phys. Rev. Lett. 124 (2020) 041804 [arXiv:1908.03227] [INSPIRE].

    ADS  Google Scholar 

  7. A.G. Cohen and D.B. Kaplan, Thermodynamic Generation of the Baryon Asymmetry, Phys. Lett. B 199 (1987) 251 [INSPIRE].

    ADS  Google Scholar 

  8. N.F. Pedersen, O.H. Soerensen, B. Dueholm and J. Mygrind, Half-harmonic parametric oscillations in Josephson junctions, J. Low Temp. Phys. 38 (1980) 1.

    ADS  Google Scholar 

  9. D. D’Humieres, M.R. Beasley, B.A. Huberman and A. Libchaber, Chaotic states and routes to chaos in the forced pendulum, Phys. Rev. A 26 (1982) 3483.

    ADS  Google Scholar 

  10. F.L. Bezrukov and M. Shaposhnikov, The Standard Model Higgs boson as the inflaton, Phys. Lett. B 659 (2008) 703 [arXiv:0710.3755] [INSPIRE].

    ADS  Google Scholar 

  11. F. Bezrukov, D. Gorbunov and M. Shaposhnikov, On initial conditions for the Hot Big Bang, JCAP 06 (2009) 029 [arXiv:0812.3622] [INSPIRE].

    ADS  Google Scholar 

  12. J. García-Bellido, D.G. Figueroa and J. Rubio, Preheating in the Standard Model with the Higgs-Inflaton coupled to gravity, Phys. Rev. D 79 (2009) 063531 [arXiv:0812.4624] [INSPIRE].

    ADS  Google Scholar 

  13. J.L.F. Barbón and J.R. Espinosa, On the Naturalness of Higgs Inflation, Phys. Rev. D 79 (2009) 081302 [arXiv:0903.0355] [INSPIRE].

    ADS  Google Scholar 

  14. A.O. Bärvinsky, A. Kamenshchik, C. Kiefer, A.A. Starobinsky and C. Steinwachs, Asymptotic freedom in inflationary cosmology with a non-minimally coupled Higgs field, JCAP 12 (2009) 003 [arXiv:0904.1698] [INSPIRE].

    ADS  Google Scholar 

  15. F. Bezrukov and M. Shaposhnikov, Standard Model Higgs boson mass from inflation: Two loop analysis, JHEP 07 (2009) 089 [arXiv:0904.1537] [INSPIRE].

    ADS  Google Scholar 

  16. G.F. Giudice and H.M. Lee, Unitarizing Higgs Inflation, Phys. Lett. B 694 (2011) 294 [arXiv:1010.1417] [INSPIRE].

    ADS  Google Scholar 

  17. F. Bezrukov, A. Magnin, M. Shaposhnikov and S. Sibiryakov, Higgs inflation: consistency and generalisations, JHEP 01 (2011) 016 [arXiv:1008.5157] [INSPIRE].

    ADS  MATH  Google Scholar 

  18. C.P. Burgess, H.M. Lee and M. Trott, Comment on Higgs Inflation and Naturalness, JHEP 07 (2010) 007 [arXiv:1002.2730] [INSPIRE].

    ADS  MATH  Google Scholar 

  19. O. Lebedev and H.M. Lee, Higgs Portal Inflation, Eur. Phys. J. C 71 (2011) 1821 [arXiv:1105.2284] [INSPIRE].

    ADS  Google Scholar 

  20. H.M. Lee, Light inflaton completing Higgs inflation, Phys. Rev. D 98 (2018) 015020 [arXiv:1802.06174] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  21. S.-M. Choi, Y.-J. Kang, H.M. Lee and K. Yamashita, Unitary inflaton as decaying dark matter, JHEP 05 (2019) 060 [arXiv:1902.03781] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  22. A.D. Linde, Inflationary Cosmology, Lect. Notes Phys. 738 (2008) 1 [arXiv:0705.0164] [INSPIRE].

    ADS  MATH  Google Scholar 

  23. T. Muta and S.D. Odintsov, Model dependence of the nonminimal scalar graviton effective coupling constant in curved space-time, Mod. Phys. Lett. A 6 (1991) 3641 [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  24. I.L. Buchbinder, S.D. Odintsov and I.L. Shapiro, Effective action in quantum gravity, CRC Press, Boca Raton U.S.A. (1992).

    Google Scholar 

  25. S. Mukaigawa, T. Muta and S.D. Odintsov, Finite grand unified theories and inflation, Int. J. Mod. Phys. A 13 (1998) 2739 [hep-ph/9709299] [INSPIRE].

  26. J. Elias-Miro, J.R. Espinosa, G.F. Giudice, G. Isidori, A. Riotto and A. Strumia, Higgs mass implications on the stability of the electroweak vacuum, Phys. Lett. B 709 (2012) 222 [arXiv:1112.3022] [INSPIRE].

    ADS  Google Scholar 

  27. G. Degrassi et al., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].

    ADS  Google Scholar 

  28. O. Lebedev and A. Westphal, Metastable Electroweak Vacuum: Implications for Inflation, Phys. Lett. B 719 (2013) 415 [arXiv:1210.6987] [INSPIRE].

    ADS  Google Scholar 

  29. A. Salvio, Higgs Inflation at NNLO after the Boson Discovery, Phys. Lett. B 727 (2013) 234 [arXiv:1308.2244] [INSPIRE].

    ADS  Google Scholar 

  30. V. Branchina, E. Messina and A. Platania, Top mass determination, Higgs inflation, and vacuum stability, JHEP 09 (2014) 182 [arXiv:1407.4112] [INSPIRE].

    ADS  Google Scholar 

  31. F. Bezrukov, J. Rubio and M. Shaposhnikov, Living beyond the edge: Higgs inflation and vacuum metastability, Phys. Rev. D 92 (2015) 083512 [arXiv:1412.3811] [INSPIRE].

    ADS  Google Scholar 

  32. F.L. Bezrukov, A. Magnin and M. Shaposhnikov, Standard Model Higgs boson mass from inflation, Phys. Lett. B 675 (2009) 88 [arXiv:0812.4950] [INSPIRE].

    ADS  Google Scholar 

  33. K. Allison, Higgs xi-inflation for the 125–126 GeV Higgs: a two-loop analysis, JHEP 02 (2014) 040 [arXiv:1306.6931] [INSPIRE].

    ADS  Google Scholar 

  34. B. Patt and F. Wilczek, Higgs-field portal into hidden sectors, hep-ph/0605188 [INSPIRE].

  35. O. Lebedev, On Stability of the Electroweak Vacuum and the Higgs Portal, Eur. Phys. J. C 72 (2012) 2058 [arXiv:1203.0156] [INSPIRE].

    ADS  Google Scholar 

  36. Y. Ema, M. Karciauskas, O. Lebedev, S. Rusak and M. Zatta, Higgs-inflaton mixing and vacuum stability, Phys. Lett. B 789 (2019) 373 [arXiv:1711.10554] [INSPIRE].

    ADS  Google Scholar 

  37. A. Salvio, A Simple Motivated Completion of the Standard Model below the Planck Scale: Axions and Right-Handed Neutrinos, Phys. Lett. B 743 (2015) 428 [arXiv:1501.03781] [INSPIRE].

    ADS  Google Scholar 

  38. S. Ipek, A.D. Plascencia and J. Turner, Assessing Perturbativity and Vacuum Stability in High-Scale Leptogenesis, JHEP 12 (2018) 111 [arXiv:1806.00460] [INSPIRE].

    ADS  Google Scholar 

  39. D. Croon, N. Fernandez, D. McKeen and G. White, Stability, reheating and leptogenesis, JHEP 06 (2019) 098 [arXiv:1903.08658] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  40. T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, Conf. Proc. C 7902131 (1979) 95 [INSPIRE].

    Google Scholar 

  41. P. Ramond, The Family Group in Grand Unified Theories, in International Symposium on Fundamentals of Quantum Theory and Quantum Field Theory, Palm Coast U.S.A. (1979), pg. 265 [hep-ph/9809459] [INSPIRE].

  42. J.W. York, Role of conformal three geometry in the dynamics of gravitation, Phys. Rev. Lett. 28 (1972) 1082 [INSPIRE].

    ADS  Google Scholar 

  43. G.W. Gibbons and S.W. Hawking, Action Integrals and Partition Functions in Quantum Gravity, Phys. Rev. D 15 (1977) 2752 [INSPIRE].

    ADS  Google Scholar 

  44. T. Faulkner, M. Tegmark, E.F. Bunn and Y. Mao, Constraining f (R) Gravity as a Scalar Tensor Theory, Phys. Rev. D 76 (2007) 063505 [astro-ph/0612569] [INSPIRE].

  45. R.M. Wald, General Relativity, Chicago University Press, Chicago U.S.A. (1984).

    MATH  Google Scholar 

  46. V. Faraoni, E. Gunzig and P. Nardone, Conformal transformations in classical gravitational theories and in cosmology, Fund. Cosmic Phys. 20 (1999) 121 [gr-qc/9811047] [INSPIRE].

  47. A.A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Adv. Ser. Astrophys. Cosmol. 3 (1987) 130 [INSPIRE].

    Google Scholar 

  48. B. Whitt, Fourth Order Gravity as General Relativity Plus Matter, Phys. Lett. B 145 (1984) 176 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  49. A. Jakubiec and J. Kijowski, On Theories of Gravitation With Nonlinear Lagrangians, Phys. Rev. D 37 (1988) 1406 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  50. K.-i. Maeda, Towards the Einstein-Hilbert Action via Conformal Transformation, Phys. Rev. D 39 (1989) 3159 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  51. J.D. Barrow and S. Cotsakis, Inflation and the Conformal Structure of Higher Order Gravity Theories, Phys. Lett. B 214 (1988) 515 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  52. F.L. Bezrukov and D.S. Gorbunov, Distinguishing between R2 -inflation and Higgs-inflation, Phys. Lett. B 713 (2012) 365 [arXiv:1111.4397] [INSPIRE].

    ADS  Google Scholar 

  53. Planck collaboration, Planck 2018 results. X. Constraints on inflation, arXiv:1807.06211 [INSPIRE].

  54. Y. Aldabergenov, R. Ishikawa, S.V. Ketov and S.I. Kruglov, Beyond Starobinsky inflation, Phys. Rev. D 98 (2018) 083511 [arXiv:1807.08394] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  55. E.W. Kolb and M.S. Turner, The Early Universe, Front. Phys. 69 (1990) 1 [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  56. L. Husdal, On Effective Degrees of Freedom in the Early Universe, Galaxies 4 (2016) 78 [arXiv:1609.04979] [INSPIRE].

    ADS  Google Scholar 

  57. A.D. Sakharov, Violation of CP Invariance, C asymmetry, and baryon asymmetry of the universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32.

    Google Scholar 

  58. F.R. Klinkhamer and N.S. Manton, A Saddle Point Solution in the Weinberg-Salam Theory, Phys. Rev. D 30 (1984) 2212 [INSPIRE].

    ADS  Google Scholar 

  59. V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe, Phys. Lett. B 155 (1985) 36 [INSPIRE].

    ADS  Google Scholar 

  60. M. Trodden, Electroweak baryogenesis, Rev. Mod. Phys. 71 (1999) 1463 [hep-ph/9803479] [INSPIRE].

  61. A. Sugamoto, The neutrino mass and the monopole-Anti-monopole dumb-bell system in the SO(10) grand unified model, Phys. Lett. B 127 (1983) 75 [INSPIRE].

    ADS  Google Scholar 

  62. Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].

  63. Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].

  64. A. Salvio, Critical Higgs inflation in a Viable Motivated Model, Phys. Rev. D 99 (2019) 015037 [arXiv:1810.00792] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  65. J. Elias-Miro, J.R. Espinosa, G.F. Giudice, H.M. Lee and A. Strumia, Stabilization of the Electroweak Vacuum by a Scalar Threshold Effect, JHEP 06 (2012) 031 [arXiv:1203.0237] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Kavli IPMU (WPI), UTIAS, University of Tokyo, Kashiwa, Chiba, 277-8583, Japan

    Neil D. Barrie

  2. Department of Physics, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan

    Akio Sugamoto

  3. Tokyo Bunkyo SC, Open Universtiy of Japan, Tokyo, 112-0012, Japan

    Akio Sugamoto

  4. Center for Neutrino Physics, Department of Physics, Virginia Tech, Blacksburg, VA, 24061, USA

    Tatsu Takeuchi

  5. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China

    Kimiko Yamashita

  6. Department of Physics, National Tsing Hua University, Hsinchu, Taiwan, 300, P.R. China

    Kimiko Yamashita

Authors
  1. Neil D. Barrie
    View author publications

    Search author on:PubMed Google Scholar

  2. Akio Sugamoto
    View author publications

    Search author on:PubMed Google Scholar

  3. Tatsu Takeuchi
    View author publications

    Search author on:PubMed Google Scholar

  4. Kimiko Yamashita
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Neil D. Barrie.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2001.07032

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrie, N.D., Sugamoto, A., Takeuchi, T. et al. Higgs inflation, vacuum stability, and leptogenesis. J. High Energ. Phys. 2020, 72 (2020). https://doi.org/10.1007/JHEP08(2020)072

Download citation

  • Received: 30 April 2020

  • Accepted: 20 July 2020

  • Published: 17 August 2020

  • Version of record: 17 August 2020

  • DOI: https://doi.org/10.1007/JHEP08(2020)072

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Cosmology of Theories beyond the SM
  • Higgs Physics
  • Neutrino Physics

Profiles

  1. Kimiko Yamashita View author profile
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载