+
X
Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Pulse-shape discrimination between electron and nuclear recoils in a NaI(Tl) crystal

  • Regular Article - Experimental Physics
  • Open access
  • Published: 18 August 2015
  • Volume 2015, article number 93, (2015)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
Pulse-shape discrimination between electron and nuclear recoils in a NaI(Tl) crystal
Download PDF
  • H.S. Lee4,
  • G. Adhikari3,
  • P. Adhikari3,
  • S. Choi2,
  • I.S. Hahn7,
  • E.J. Jeon1,
  • H.W. Joo2,
  • W.G. Kang1,
  • G.B. Kim1,2,
  • H.J. Kim5,
  • H.O. Kim1,
  • K.W. Kim2,
  • N.Y. Kim1,
  • S.K. Kim2,
  • Y.D. Kim1,3,
  • Y.H. Kim1,6,
  • J.H. Lee6,
  • M.H. Lee1,
  • D.S. Leonard1,
  • J. Li1,
  • S.Y. Oh2,
  • S.L. Olsen1,
  • H.K. Park1,
  • H.S. Park6,
  • K.S. Park1,
  • J.H. Shim4 &
  • …
  • J.H. So1 
  • 995 Accesses

  • 14 Citations

  • 2 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We report on the response of a high light-output NaI(Tl) crystal to nuclear recoils induced by neutrons from an Am-Be source and compare the results with the response to electron recoils produced by Compton-scattered 662 keV γ-rays from a 137Cs source. The measured pulse-shape discrimination (PSD) power of the NaI(Tl) crystal is found to be significantly improved because of the high light output of the NaI(Tl) detector. We quantify the PSD power with a quality factor and estimate the sensitivity to the interaction rate for weakly interacting massive particles (WIMPs) with nucleons, and the result is compared with the annual modulation amplitude observed by the DAMA/LIBRA experiment. The sensitivity to spin-independent WIMP-nucleon interactions based on 100 kg·year of data from NaI detectors is estimated with simulated experiments, using the standard halo model.

Article PDF

Download to read the full article text

Similar content being viewed by others

NaI(Tl) crystal scintillator encapsulated in two organic-scintillator layers with pulse shape data analysis

Article 13 October 2022

Limits on interactions between weakly interacting massive particles and nucleons obtained with NaI(Tl) crystal detectors

Article Open access 29 March 2019

Pulse-shaping method for real-time neutron/gamma discrimination at low sampling rates

Article 14 November 2023

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Experimental Nuclear Physics
  • Neutron Diffraction
  • Nuclear Chemistry
  • Nuclear and Particle Physics
  • Nuclear Physics
  • Nuclear speckles
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. D. Clowe, A. Gonzalez and M. Markevitch, Weak lensing mass reconstruction of the interacting cluster 1E0657-558: direct evidence for the existence of dark matter, Astrophys. J. 604 (2004) 596 [astro-ph/0312273] [INSPIRE].

  2. D. Clowe et al., A direct empirical proof of the existence of dark matter, Astrophys. J. 648 (2006) L109 [astro-ph/0608407] [INSPIRE].

  3. M. Persic, P. Salucci and F. Stel, The universal rotation curve of spiral galaxies: 1. The dark matter connection, Mon. Not. Roy. Astron. Soc. 281 (1996) 27 [astro-ph/9506004] [INSPIRE].

  4. D. Larson et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: power spectra and WMAP-derived parameters, Astrophys. J. Suppl. 192 (2011) 16 [arXiv:1001.4635] [INSPIRE].

    Article  ADS  Google Scholar 

  5. WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].

  6. Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571 (2014) A16 [arXiv:1303.5076] [INSPIRE].

  7. G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].

  8. Particle Data Group, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].

  9. G. Bertone, D.G. Cerdeno, M. Fornasa, R. Ruiz de Austri, C. Strege and R. Trotta, Global fits of the CMSSM including the first LHC and XENON100 data, JCAP 01 (2012) 015 [arXiv:1107.1715] [INSPIRE].

    Article  ADS  Google Scholar 

  10. C. Strege, G. Bertone, F. Feroz, M. Fornasa, R. Ruiz de Austri and R. Trotta, Global Fits of the CMSSM and NUHM including the LHC Higgs discovery and new XENON100 constraints, JCAP 04 (2013) 013 [arXiv:1212.2636] [INSPIRE].

    Article  ADS  Google Scholar 

  11. R. Bernabei et al., Final model independent result of DAMA/LIBRA-phase1, Eur. Phys. J. C 73 (2013) 2648 [arXiv:1308.5109] [INSPIRE].

    Article  ADS  Google Scholar 

  12. G. Angloher et al., Results from 730 kg days of the CRESST-II Dark Matter Search, Eur. Phys. J. C 72 (2012) 1971 [arXiv:1109.0702] [INSPIRE].

    Article  ADS  Google Scholar 

  13. CoGeNT collaboration, C.E. Aalseth et al., Results from a search for light-mass dark matter with a p-type point contact germanium detector, Phys. Rev. Lett. 106 (2011) 131301 [arXiv:1002.4703] [INSPIRE].

  14. CoGeNT collaboration, C.E. Aalseth et al., CoGeNT: a search for low-mass dark matter using p-type point contact germanium detectors, Phys. Rev. D 88 (2013) 012002 [arXiv:1208.5737] [INSPIRE].

  15. CDMS collaboration, R. Agnese et al., Silicon detector dark matter results from the final exposure of CDMS II, Phys. Rev. Lett. 111 (2013) 251301 [arXiv:1304.4279] [INSPIRE].

  16. D. Hooper and T.R. Slatyer, Two emission mechanisms in the Fermi bubbles: a possible signal of annihilating Dark Matter, Phys. Dark Univ. 2 (2013) 118 [arXiv:1302.6589].

    Article  Google Scholar 

  17. T. Daylan et al., The characterization of the gamma-ray signal from the central Milky Way: a compelling case for annihilating dark matter, arXiv:1402.6703 [INSPIRE].

  18. R. Bernabei et al., Searching for WIMPs by the annual modulation signature, Phys. Lett. B 424 (1998) 195 [INSPIRE].

    Article  ADS  Google Scholar 

  19. DAMA collaboration, R. Bernabei et al., First results from DAMA/LIBRA and the combined results with DAMA/NaI, Eur. Phys. J. C 56 (2008) 333 [arXiv:0804.2741] [INSPIRE].

  20. DAMA, LIBRA collaboration, R. Bernabei et al., New results from DAMA/LIBRA, Eur. Phys. J. C 67 (2010) 39 [arXiv:1002.1028] [INSPIRE].

  21. CDMS collaboration, D.S. Akerib et al., New results from the cryogenic dark matter search experiment, Phys. Rev. D 68 (2003) 082002 [hep-ex/0306001] [INSPIRE].

  22. C. Savage et al., Compatibility of DAMA/LIBRA dark matter detection with other searches, JCAP 04 (2009) 039.

    Google Scholar 

  23. K. Freese, M. Lisanti and C. Savage, Colloquium: Annual modulation of dark matter, Rev. Mod. Phys. 85 (2013) 1561 [arXiv:1209.3339] [INSPIRE].

    Article  ADS  Google Scholar 

  24. XENON10 collaboration, J. Angle et al., A search for light dark matter in XENON10 data, Phys. Rev. Lett. 107 (2011) 051301 [Erratum ibid. 110 (2013) 249901] [arXiv:1104.3088] [INSPIRE].

  25. CDEX collaboration, Q. Yue et al., Limits on light WIMPs from the CDEX-1 experiment with a p-type point-contact germanium detector at the China Jingping Underground Laboratory, Phys. Rev. D 90 (2014) 091701 [arXiv:1404.4946] [INSPIRE].

  26. LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].

  27. SuperCDMS collaboration, R. Agnese et al., Search for low-mass weakly interacting massive particles using voltage-assisted calorimetric ionization detection in the SuperCDMS experiment, Phys. Rev. Lett. 112 (2014) 041302 [arXiv:1309.3259] [INSPIRE].

  28. S.C. Kim et al., New limits on interactions between weakly interacting massive particles and nucleons obtained with CsI(Tl) crystal detectors, Phys. Rev. Lett. 108 (2012) 181301 [arXiv:1204.2646] [INSPIRE].

    Article  ADS  Google Scholar 

  29. H.S. Lee et al., Search for low-mass dark matter with CsI(Tl) crystal detectors, Phys. Rev. D 90 (2014) 052006 [arXiv:1404.3443] [INSPIRE].

    ADS  Google Scholar 

  30. A.V. Belikov, J.F. Gunion, D. Hooper and T.M.P. Tait, CoGeNT, DAMA and light neutralino dark matter, Phys. Lett. B 705 (2011) 82 [arXiv:1009.0549] [INSPIRE].

    Article  ADS  Google Scholar 

  31. M.I. Gresham and K.M. Zurek, Light dark matter anomalies after LUX, Phys. Rev. D 89 (2014) 016017 [arXiv:1311.2082] [INSPIRE].

    ADS  Google Scholar 

  32. S.K. Lee, M. Lisanti, A.H.G. Peter and B.R. Safdi, Effect of gravitational focusing on annual modulation in dark-matter direct-detection experiments, Phys. Rev. Lett. 112 (2014) 011301 [arXiv:1308.1953] [INSPIRE].

    Article  ADS  Google Scholar 

  33. J.H. Davis, Fitting the annual modulation in DAMA with neutrons from muons and neutrinos, Phys. Rev. Lett. 113 (2014) 081302 [arXiv:1407.1052] [INSPIRE].

    Article  ADS  Google Scholar 

  34. G. Plante et al., New measurement of the scintillation efficiency of low-energy nuclear recoils in liquid Xenon, Phys. Rev. C 84 (2011) 045805 [arXiv:1104.2587] [INSPIRE].

    ADS  Google Scholar 

  35. D. Barker and D.M. Mei, Germanium detector response to nuclear recoils in searching for dark matter, Astropart. Phys. 38 (2012) 1 [arXiv:1203.4620] [INSPIRE].

    Article  ADS  Google Scholar 

  36. J.I. Collar, Quenching and channeling of nuclear recoils in NaI(Tl): Implications for dark-matter searches, Phys. Rev. C 88 (2013) 035806 [arXiv:1302.0796] [INSPIRE].

    ADS  Google Scholar 

  37. J.H. Lee, Measurement of the quenching and channeling effects in a CsI crystal used for a WIMP search, Nucl. Instrum. Meth. A 782 (2015) 133.

    Article  ADS  Google Scholar 

  38. P.J. Fox, J. Liu and N. Weiner, Integrating out astrophysical uncertainties, Phys. Rev. D 83 (2011) 103514 [arXiv:1011.1915] [INSPIRE].

    ADS  Google Scholar 

  39. Y.-Y. Mao, L.E. Strigari and R.H. Wechsler, Connecting direct dark matter detection experiments to cosmologically motivated halo models, Phys. Rev. D 89 (2014) 063513 [arXiv:1304.6401] [INSPIRE].

    ADS  Google Scholar 

  40. C. Arina, E. Del Nobile and P. Panci, Dark matter with pseudoscalar-mediated interactions explains the DAMA signal and the galactic center excess, Phys. Rev. Lett. 114 (2015) 011301 [arXiv:1406.5542] [INSPIRE].

    Article  ADS  Google Scholar 

  41. DAMA/LIBRA collaboration, R. Bernabei et al., The dark matter annual modulation results from DAMA/LIBRA, EPJ Web Conf. 70 (2014) 00043.

  42. J. Amare et al., Preliminary results of ANAIS-25, Nucl. Instrum. Meth. A 742 (2014) 187 [arXiv:1308.3478] [INSPIRE].

    Article  ADS  Google Scholar 

  43. DM-Ice17 collaboration, J. Cherwinka et al., First data from DM-Ice17, Phys. Rev. D 90 (2014) 092005 [arXiv:1401.4804] [INSPIRE].

  44. K.W. Kim et al., Tests on NaI(Tl) crystals for WIMP search at the Yangyang Underground Laboratory, Astropart. Phys. 62 (2014) 249 [arXiv:1407.1586] [INSPIRE].

    Article  ADS  Google Scholar 

  45. Kims collaboration, H.S. Lee et al., First limit on wimp cross section with low background CsI(Tl) crystal detector, Phys. Lett. B 633 (2006) 201 [astro-ph/0509080] [INSPIRE].

  46. KIMS collaboration, H.S. Lee et al., Limits on WIMP-nucleon cross section with CsI(Tl) crystal detectors, Phys. Rev. Lett. 99 (2007) 091301 [arXiv:0704.0423] [INSPIRE].

  47. R. Bernabei et al., New limits on WIMP search with large-mass low-radioactivity NaI(Tl) set-up at Gran Sasso, Phys. Lett. B 389 (1996) 757 [INSPIRE].

    Article  ADS  Google Scholar 

  48. UK Dark Matter collaboration, G.J. Alner et al., Limits on WIMP cross-sections from the NAIAD experiment at the Boulby Underground Laboratory, Phys. Lett. B 616 (2005) 17 [hep-ex/0504031] [INSPIRE].

  49. G. Gerbier, J. Mallet, L. Mosca, C. Tao, B. Chambon, V. Chazal et al., Pulse shape discrimination with NaI(Tl) and results from a WIMP search at the Laboratoire Souterrain de Modane, Astropart. Phys. 11 (1999) 287 [INSPIRE].

    Article  ADS  Google Scholar 

  50. H. Park et al., Neutron beam test of CsI crystal for Dark Matter search, Nucl. Instrum. Meth. A 491 (2002) 460 [nucl-ex/0202014] [INSPIRE].

  51. H.S. Lee et al., Neutron calibration facility with an Am-Be source for pulse shape discrimination measurement of CsI(Tl) crystals, 2014 JINST 9 P11015 [arXiv:1409.0948] [INSPIRE].

  52. B. Ahmed et al., The NAIAD experiment for WIMP searches at Boulby mine and recent results, Astropart. Phys. 19 (2003) 691 [hep-ex/0301039] [INSPIRE].

  53. R. Bernabei et al., The DAMA/LIBRA apparatus, Nucl. Instrum. Meth. A 592 (2008) 3 [arXiv:0804.2738] [INSPIRE].

    Google Scholar 

  54. H.J. Kim et al., Measurement of the neutron flux in the CPL underground laboratory and simulation studies of neutron shielding for WIMP searches, Astropart. Phys. 20 (2004) 549 [INSPIRE].

    Article  ADS  Google Scholar 

  55. J.J. Zhu et al., Performance of a large volume liquid scintillation detector for the measurement of fast neutrons, J. Kor. Phys. Soc. 47 (2005) 202.

    Google Scholar 

  56. R.J. Gaiskell et al., The statistics of background rejection in direct detection experiments for dark matter, Nucl. Phys. Proc. Suppl. B 51 (1996) 279.

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Center for Underground Physics, Institute for Basic Science (IBS), Daejon, 305-811, South Korea

    E.J. Jeon, W.G. Kang, G.B. Kim, H.O. Kim, N.Y. Kim, Y.D. Kim, Y.H. Kim, M.H. Lee, D.S. Leonard, J. Li, S.L. Olsen, H.K. Park, K.S. Park & J.H. So

  2. Department of Physics and Astronomy, Seoul National University, Seoul, 151-747, South Korea

    S. Choi, H.W. Joo, G.B. Kim, K.W. Kim, S.K. Kim & S.Y. Oh

  3. Department of Physics, Sejong University, Seoul, 143-747, South Korea

    G. Adhikari, P. Adhikari & Y.D. Kim

  4. Department of Physics, Ewha Womans University, Seoul, 120-750, South Korea

    H.S. Lee & J.H. Shim

  5. Department of Physics, Kyungpook National University, Daegu, 702-701, South Korea

    H.J. Kim

  6. Korea Research Institute of Standards and Science, Daejon, 205-340, South Korea

    Y.H. Kim, J.H. Lee & H.S. Park

  7. Department of Science Education, Ewha Womans University, Seoul, 120-750, South Korea

    I.S. Hahn

Authors
  1. H.S. Lee
    View author publications

    Search author on:PubMed Google Scholar

  2. G. Adhikari
    View author publications

    Search author on:PubMed Google Scholar

  3. P. Adhikari
    View author publications

    Search author on:PubMed Google Scholar

  4. S. Choi
    View author publications

    Search author on:PubMed Google Scholar

  5. I.S. Hahn
    View author publications

    Search author on:PubMed Google Scholar

  6. E.J. Jeon
    View author publications

    Search author on:PubMed Google Scholar

  7. H.W. Joo
    View author publications

    Search author on:PubMed Google Scholar

  8. W.G. Kang
    View author publications

    Search author on:PubMed Google Scholar

  9. G.B. Kim
    View author publications

    Search author on:PubMed Google Scholar

  10. H.J. Kim
    View author publications

    Search author on:PubMed Google Scholar

  11. H.O. Kim
    View author publications

    Search author on:PubMed Google Scholar

  12. K.W. Kim
    View author publications

    Search author on:PubMed Google Scholar

  13. N.Y. Kim
    View author publications

    Search author on:PubMed Google Scholar

  14. S.K. Kim
    View author publications

    Search author on:PubMed Google Scholar

  15. Y.D. Kim
    View author publications

    Search author on:PubMed Google Scholar

  16. Y.H. Kim
    View author publications

    Search author on:PubMed Google Scholar

  17. J.H. Lee
    View author publications

    Search author on:PubMed Google Scholar

  18. M.H. Lee
    View author publications

    Search author on:PubMed Google Scholar

  19. D.S. Leonard
    View author publications

    Search author on:PubMed Google Scholar

  20. J. Li
    View author publications

    Search author on:PubMed Google Scholar

  21. S.Y. Oh
    View author publications

    Search author on:PubMed Google Scholar

  22. S.L. Olsen
    View author publications

    Search author on:PubMed Google Scholar

  23. H.K. Park
    View author publications

    Search author on:PubMed Google Scholar

  24. H.S. Park
    View author publications

    Search author on:PubMed Google Scholar

  25. K.S. Park
    View author publications

    Search author on:PubMed Google Scholar

  26. J.H. Shim
    View author publications

    Search author on:PubMed Google Scholar

  27. J.H. So
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to H.S. Lee.

Additional information

ArXiv ePrint: 1503.05253

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H., Adhikari, G., Adhikari, P. et al. Pulse-shape discrimination between electron and nuclear recoils in a NaI(Tl) crystal. J. High Energ. Phys. 2015, 93 (2015). https://doi.org/10.1007/JHEP08(2015)093

Download citation

  • Received: 10 April 2015

  • Revised: 04 June 2015

  • Accepted: 29 July 2015

  • Published: 18 August 2015

  • DOI: https://doi.org/10.1007/JHEP08(2015)093

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Dark Matter and Double Beta Decay
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载