+
X
Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Impact of high-scale Seesaw and Leptogenesis on inflationary tensor perturbations as detectable gravitational waves

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 22 May 2023
  • Volume 2023, article number 172, (2023)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
Impact of high-scale Seesaw and Leptogenesis on inflationary tensor perturbations as detectable gravitational waves
Download PDF
  • Maximilian Berbig1 &
  • Anish Ghoshal  ORCID: orcid.org/0000-0001-7045-302X2 
  • 510 Accesses

  • 17 Citations

  • 8 Altmetric

  • 2 Mentions

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We discuss the damping of inflationary gravitational waves (GW) that re-enter the horizon before or during an epoch, where the energy budget of the universe is dominated by an unstable right handed neutrino (RHN), whose out of equilibrium decay releases entropy. Starting from the minimal Standard Model extension, motivated by the observed neutrino mass scale, with nothing more than 3 RHN for the Seesaw mechanism, we discuss the conditions for high scale leptogenesis assuming a thermal initial population of RHN. We further address the associated production of potentially light non-thermal dark matter and a potential component of dark radiation from the same RHN decay. One of our main findings is that the frequency, above which the damping of the tensor modes is potentially observable, is completely determined by successful leptogenesis and a Davidson-Ibarra type bound to be at around 0.1 Hz. To quantify the detection prospects of this GW background for various proposed interferometers such as AEDGE, BBO, DECIGO, Einstein Telescope or LISA we compute the signal-to-noise ratio (SNR). This allows us to investigate the viable parameter space of our model, spanned by the mass of the decaying RHN \( {M}_1\gtrsim 2.4\times {10}^8\textrm{GeV}\cdot \sqrt{2\times {10}^{-7}\textrm{eV}/{\tilde{m}}_1} \) (for leptogenesis) and the effective neutrino mass parameterizing its decay width \( {\tilde{m}}_1 \) < 2.9 × 10−7 eV (for RHN matter domination). Thus gravitational wave astronomy is a novel way to probe both the Seesaw and the leptogenesis scale, which are completely inaccessible to laboratory experiments in high scale scenarios.

Article PDF

Download to read the full article text

Similar content being viewed by others

Leptogenesis and Dark Matter Through Relativistic Bubble Walls

Chapter © 2025

Leptogenesis and dark matter through relativistic bubble walls with observable gravitational waves

Article Open access 23 November 2022

Primordial gravitational waves as probe of dark matter in interferometer missions: Fisher forecast and MCMC

Article Open access 19 December 2024

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Astrophysics
  • Cosmology
  • Gravitational Physics
  • High-Energy Astrophysics
  • Particle Physics
  • Physics and Astronomy
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Kamiokande collaboration, Solar neutrino data covering solar cycle 22, Phys. Rev. Lett. 77 (1996) 1683 [INSPIRE].

  2. Super-Kamiokande collaboration, Constraints on neutrino oscillations using 1258 days of Super-Kamiokande solar neutrino data, Phys. Rev. Lett. 86 (2001) 5656 [hep-ex/0103033] [INSPIRE].

  3. Super-Kamiokande collaboration, Determination of solar neutrino oscillation parameters using 1496 days of Super-Kamiokande I data, Phys. Lett. B 539 (2002) 179 [hep-ex/0205075] [INSPIRE].

  4. SNO collaboration, Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89 (2002) 011301 [nucl-ex/0204008] [INSPIRE].

  5. Super-Kamiokande collaboration, A Measurement of atmospheric neutrino oscillation parameters by SUPER-KAMIOKANDE I, Phys. Rev. D 71 (2005) 112005 [hep-ex/0501064] [INSPIRE].

  6. SNO collaboration, Measurement of the νe and Total 8B Solar Neutrino Fluxes with the Sudbury Neutrino Observatory Phase-III Data Set, Phys. Rev. C 87 (2013) 015502 [arXiv:1107.2901] [INSPIRE].

  7. Super-Kamiokande collaboration, Solar Neutrino Measurements in Super-Kamiokande-IV, Phys. Rev. D 94 (2016) 052010 [arXiv:1606.07538] [INSPIRE].

  8. Borexino collaboration, Measurement of neutrino flux from the primary proton-proton fusion process in the Sun with Borexino detector, Phys. Part. Nucl. 47 (2016) 995 [arXiv:1507.02432] [INSPIRE].

  9. IceCube collaboration, Measurement of Atmospheric Neutrino Oscillations at 6–56 GeV with IceCube DeepCore, Phys. Rev. Lett. 120 (2018) 071801 [arXiv:1707.07081] [INSPIRE].

  10. ANTARES collaboration, Measuring the atmospheric neutrino oscillation parameters and constraining the 3 + 1 neutrino model with ten years of ANTARES data, JHEP 06 (2019) 113 [arXiv:1812.08650] [INSPIRE].

  11. KamLAND collaboration, Precision Measurement of Neutrino Oscillation Parameters with KamLAND, Phys. Rev. Lett. 100 (2008) 221803 [arXiv:0801.4589] [INSPIRE].

  12. T2K collaboration, Indication of Electron Neutrino Appearance from an Accelerator-produced Off-axis Muon Neutrino Beam, Phys. Rev. Lett. 107 (2011) 041801 [arXiv:1106.2822] [INSPIRE].

  13. Double Chooz collaboration, Indication of Reactor \( {\overline{\nu}}_e \) Disappearance in the Double Chooz Experiment, Phys. Rev. Lett. 108 (2012) 131801 [arXiv:1112.6353] [INSPIRE].

  14. T2K collaboration, Observation of Electron Neutrino Appearance in a Muon Neutrino Beam, Phys. Rev. Lett. 112 (2014) 061802 [arXiv:1311.4750] [INSPIRE].

  15. KATRIN collaboration, Direct neutrino-mass measurement with sub-electronvolt sensitivity, Nature Phys. 18 (2022) 160 [arXiv:2105.08533] [INSPIRE].

  16. Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [Erratum ibid. 652 (2021) C4] [arXiv:1807.06209] [INSPIRE].

  17. eBOSS collaboration, Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Cosmological implications from two decades of spectroscopic surveys at the Apache Point Observatory, Phys. Rev. D 103 (2021) 083533 [arXiv:2007.08991] [INSPIRE].

  18. J. Martin, C. Ringeval and V. Vennin, Encyclopædia Inflationaris, Phys. Dark Univ. 5-6 (2014) 75 [arXiv:1303.3787] [INSPIRE].

    Google Scholar 

  19. L.P. Grishchuk, Amplification of gravitational waves in an istropic universe, Zh. Eksp. Teor. Fiz. 67 (1974) 825 [INSPIRE].

  20. A.A. Starobinsky, Spectrum of relict gravitational radiation and the early state of the universe, JETP Lett. 30 (1979) 682 [INSPIRE].

    ADS  Google Scholar 

  21. V.A. Rubakov, M.V. Sazhin and A.V. Veryaskin, Graviton Creation in the Inflationary Universe and the Grand Unification Scale, Phys. Lett. B 115 (1982) 189 [INSPIRE].

    ADS  Google Scholar 

  22. M.C. Guzzetti, N. Bartolo, M. Liguori and S. Matarrese, Gravitational waves from inflation, Riv. Nuovo Cim. 39 (2016) 399 [arXiv:1605.01615] [INSPIRE].

    ADS  Google Scholar 

  23. N. Seto and J.I. Yokoyama, Probing the equation of state of the early universe with a space laser interferometer, J. Phys. Soc. Jap. 72 (2003) 3082 [gr-qc/0305096] [INSPIRE].

  24. L.A. Boyle and P.J. Steinhardt, Probing the early universe with inflationary gravitational waves, Phys. Rev. D 77 (2008) 063504 [astro-ph/0512014] [INSPIRE].

  25. L.A. Boyle and A. Buonanno, Relating gravitational wave constraints from primordial nucleosynthesis, pulsar timing, laser interferometers, and the CMB: Implications for the early Universe, Phys. Rev. D 78 (2008) 043531 [arXiv:0708.2279] [INSPIRE].

  26. S. Kuroyanagi, T. Chiba and N. Sugiyama, Precision calculations of the gravitational wave background spectrum from inflation, Phys. Rev. D 79 (2009) 103501 [arXiv:0804.3249] [INSPIRE].

  27. K. Nakayama and J. Yokoyama, Gravitational Wave Background and Non-Gaussianity as a Probe of the Curvaton Scenario, JCAP 01 (2010) 010 [arXiv:0910.0715] [INSPIRE].

    ADS  Google Scholar 

  28. S. Kuroyanagi, C. Ringeval and T. Takahashi, Early universe tomography with CMB and gravitational waves, Phys. Rev. D 87 (2013) 083502 [arXiv:1301.1778] [INSPIRE].

  29. R. Jinno, T. Moroi and K. Nakayama, Inflationary Gravitational Waves and the Evolution of the Early Universe, JCAP 01 (2014) 040 [arXiv:1307.3010] [INSPIRE].

    ADS  Google Scholar 

  30. K. Saikawa and S. Shirai, Primordial gravitational waves, precisely: The role of thermodynamics in the Standard Model, JCAP 05 (2018) 035 [arXiv:1803.01038] [INSPIRE].

    ADS  Google Scholar 

  31. N. Bernal, A. Ghoshal, F. Hajkarim and G. Lambiase, Primordial Gravitational Wave Signals in Modified Cosmologies, JCAP 11 (2020) 051 [arXiv:2008.04959] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  32. K. Nakayama, S. Saito, Y. Suwa and J. Yokoyama, Space laser interferometers can determine the thermal history of the early Universe, Phys. Rev. D 77 (2008) 124001 [arXiv:0802.2452] [INSPIRE].

  33. K. Nakayama, S. Saito, Y. Suwa and J. Yokoyama, Probing reheating temperature of the universe with gravitational wave background, JCAP 06 (2008) 020 [arXiv:0804.1827] [INSPIRE].

    ADS  Google Scholar 

  34. S. Kuroyanagi, K. Nakayama and S. Saito, Prospects for determination of thermal history after inflation with future gravitational wave detectors, Phys. Rev. D 84 (2011) 123513 [arXiv:1110.4169] [INSPIRE].

  35. W. Buchmüller, V. Domcke, K. Kamada and K. Schmitz, The Gravitational Wave Spectrum from Cosmological B − L Breaking, JCAP 10 (2013) 003 [arXiv:1305.3392] [INSPIRE].

    ADS  Google Scholar 

  36. W. Buchmüller, V. Domcke, K. Kamada and K. Schmitz, A Minimal Supersymmetric Model of Particle Physics and the Early Universe, arXiv:1309.7788 [INSPIRE].

  37. R. Jinno, T. Moroi and T. Takahashi, Studying Inflation with Future Space-Based Gravitational Wave Detectors, JCAP 12 (2014) 006 [arXiv:1406.1666] [INSPIRE].

    ADS  Google Scholar 

  38. S. Kuroyanagi, K. Nakayama and J. Yokoyama, Prospects of determination of reheating temperature after inflation by DECIGO, PTEP 2015 (2015) 013E02 [arXiv:1410.6618] [INSPIRE].

  39. S. Schettler, T. Boeckel and J. Schaffner-Bielich, Imprints of the QCD Phase Transition on the Spectrum of Gravitational Waves, Phys. Rev. D 83 (2011) 064030 [arXiv:1010.4857] [INSPIRE].

  40. F. Hajkarim, J. Schaffner-Bielich, S. Wystub and M.M. Wygas, Effects of the QCD Equation of State and Lepton Asymmetry on Primordial Gravitational Waves, Phys. Rev. D 99 (2019) 103527 [arXiv:1904.01046] [INSPIRE].

  41. R. Jinno, T. Moroi and K. Nakayama, Probing dark radiation with inflationary gravitational waves, Phys. Rev. D 86 (2012) 123502 [arXiv:1208.0184] [INSPIRE].

  42. R.R. Caldwell, T.L. Smith and D.G.E. Walker, Using a Primordial Gravitational Wave Background to Illuminate New Physics, Phys. Rev. D 100 (2019) 043513 [arXiv:1812.07577] [INSPIRE].

  43. Particle Data Group collaboration, Review of Particle Physics, PTEP 2020 (2020) 083C01 [INSPIRE].

  44. B.D. Fields, K.A. Olive, T.-H. Yeh and C. Young, Big-Bang Nucleosynthesis after Planck, JCAP 03 (2020) 010 [Erratum ibid. 11 (2020) E02] [arXiv:1912.01132] [INSPIRE].

  45. F. Zwicky, Die Rotverschiebung von extragalaktischen Nebeln, Helv. Phys. Acta 6 (1933) 110 [INSPIRE].

    ADS  MATH  Google Scholar 

  46. V.C. Rubin and W.K. Ford Jr., Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions, Astrophys. J. 159 (1970) 379 [INSPIRE].

    ADS  Google Scholar 

  47. D. Clowe et al., A direct empirical proof of the existence of dark matter, Astrophys. J. Lett. 648 (2006) L109 [astro-ph/0608407] [INSPIRE].

  48. A.D. Sakharov, Violation of CP Invariance, C asymmetry, and baryon asymmetry of the universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32 [INSPIRE].

  49. P. Minkowski, μ → eγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].

    ADS  Google Scholar 

  50. T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, Conf. Proc. C 7902131 (1979) 95 [INSPIRE].

  51. M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].

  52. S.L. Glashow, The Future of Elementary Particle Physics, NATO Sci. Ser. B 61 (1980) 687 [INSPIRE].

  53. T. Yanagida, Horizontal Symmetry and Masses of Neutrinos, Prog. Theor. Phys. 64 (1980) 1103 [INSPIRE].

  54. R.N. Mohapatra and G. Senjanovic, Neutrino Mass and Spontaneous Parity Nonconservation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].

    ADS  MATH  Google Scholar 

  55. M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].

  56. M.A. Luty, Baryogenesis via leptogenesis, Phys. Rev. D 45 (1992) 455 [INSPIRE].

  57. M. Plumacher, Baryogenesis and lepton number violation, Z. Phys. C 74 (1997) 549 [hep-ph/9604229] [INSPIRE].

  58. L. Covi, E. Roulet and F. Vissani, CP violating decays in leptogenesis scenarios, Phys. Lett. B 384 (1996) 169 [hep-ph/9605319] [INSPIRE].

  59. G.F. Giudice et al., Towards a complete theory of thermal leptogenesis in the SM and MSSM, Nucl. Phys. B 685 (2004) 89 [hep-ph/0310123] [INSPIRE].

  60. V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe, Phys. Lett. B 155 (1985) 36 [INSPIRE].

  61. E.W. Kolb and M.S. Turner, The Early Universe, CRC Press (1990) [https://doi.org/10.1201/9780429492860] [INSPIRE].

  62. G. Arcadi et al., The waning of the WIMP? A review of models, searches, and constraints, Eur. Phys. J. C 78 (2018) 203 [arXiv:1703.07364] [INSPIRE].

    ADS  Google Scholar 

  63. J.L. Feng, A. Rajaraman and F. Takayama, Superweakly interacting massive particles, Phys. Rev. Lett. 91 (2003) 011302 [hep-ph/0302215] [INSPIRE].

  64. L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West, Freeze-In Production of FIMP Dark Matter, JHEP 03 (2010) 080 [arXiv:0911.1120] [INSPIRE].

    ADS  MATH  Google Scholar 

  65. N. Bernal et al., The Dawn of FIMP Dark Matter: A Review of Models and Constraints, Int. J. Mod. Phys. A 32 (2017) 1730023 [arXiv:1706.07442] [INSPIRE].

    ADS  Google Scholar 

  66. G.B. Gelmini and P. Gondolo, Neutralino with the right cold dark matter abundance in (almost) any supersymmetric model, Phys. Rev. D 74 (2006) 023510 [hep-ph/0602230] [INSPIRE].

  67. A. Falkowski, J.T. Ruderman and T. Volansky, Asymmetric Dark Matter from Leptogenesis, JHEP 05 (2011) 106 [arXiv:1101.4936] [INSPIRE].

    ADS  MATH  Google Scholar 

  68. A. Falkowski, E. Kuflik, N. Levi and T. Volansky, Light Dark Matter from Leptogenesis, Phys. Rev. D 99 (2019) 015022 [arXiv:1712.07652] [INSPIRE].

  69. R.J. Scherrer and M.S. Turner, Decaying Particles Do Not Heat Up the Universe, Phys. Rev. D 31 (1985) 681 [INSPIRE].

  70. F. Bezrukov, H. Hettmansperger and M. Lindner, keV sterile neutrino Dark Matter in gauge extensions of the Standard Model, Phys. Rev. D 81 (2010) 085032 [arXiv:0912.4415] [INSPIRE].

  71. W. Buchmüller, P. Di Bari and M. Plumacher, Leptogenesis for pedestrians, Annals Phys. 315 (2005) 305 [hep-ph/0401240] [INSPIRE].

  72. A. Pilaftsis and T.E.J. Underwood, Resonant leptogenesis, Nucl. Phys. B 692 (2004) 303 [hep-ph/0309342] [INSPIRE].

  73. K. Moffat et al., Three-flavored nonresonant leptogenesis at intermediate scales, Phys. Rev. D 98 (2018) 015036 [arXiv:1804.05066] [INSPIRE].

  74. J. Schechter and J.W.F. Valle, Neutrinoless Double beta Decay in SU(2) × U(1) Theories, Phys. Rev. D 25 (1982) 2951 [INSPIRE].

    ADS  Google Scholar 

  75. S. Dell’Oro, S. Marcocci, M. Viel and F. Vissani, Neutrinoless double beta decay: 2015 review, Adv. High Energy Phys. 2016 (2016) 2162659 [arXiv:1601.07512] [INSPIRE].

  76. R.E. Shrock, New Tests For, and Bounds On, Neutrino Masses and Lepton Mixing, Phys. Lett. B 96 (1980) 159 [INSPIRE].

    ADS  Google Scholar 

  77. B. Kayser and R.E. Shrock, Distinguishing Between Dirac and Majorana Neutrinos in Neutral Current Reactions, Phys. Lett. B 112 (1982) 137 [INSPIRE].

    ADS  Google Scholar 

  78. J. De Vries et al., Long-lived Sterile Neutrinos at the LHC in Effective Field Theory, JHEP 03 (2021) 148 [arXiv:2010.07305] [INSPIRE].

    ADS  Google Scholar 

  79. T. Endoh et al., CP violation in neutrino oscillation and leptogenesis, Phys. Rev. Lett. 89 (2002) 231601 [hep-ph/0209020] [INSPIRE].

  80. I. Esteban et al., Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity, JHEP 01 (2017) 087 [arXiv:1611.01514] [INSPIRE].

    ADS  Google Scholar 

  81. E. Bertuzzo, P. Di Bari and L. Marzola, The problem of the initial conditions in flavoured leptogenesis and the tauon N2-dominated scenario, Nucl. Phys. B 849 (2011) 521 [arXiv:1007.1641] [INSPIRE].

    ADS  MATH  Google Scholar 

  82. S. Ipek, A.D. Plascencia and J. Turner, Assessing Perturbativity and Vacuum Stability in High-Scale Leptogenesis, JHEP 12 (2018) 111 [arXiv:1806.00460] [INSPIRE].

    ADS  Google Scholar 

  83. D. Croon, N. Fernandez, D. McKeen and G. White, Stability, reheating and leptogenesis, JHEP 06 (2019) 098 [arXiv:1903.08658] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  84. J.A. Dror et al., Testing the Seesaw Mechanism and Leptogenesis with Gravitational Waves, Phys. Rev. Lett. 124 (2020) 041804 [arXiv:1908.03227] [INSPIRE].

  85. B. Barman, D. Borah, A. Dasgupta and A. Ghoshal, Probing high scale Dirac leptogenesis via gravitational waves from domain walls, Phys. Rev. D 106 (2022) 015007 [arXiv:2205.03422] [INSPIRE].

  86. D.I. Dunsky et al., GUTs, hybrid topological defects, and gravitational waves, Phys. Rev. D 106 (2022) 075030 [arXiv:2111.08750] [INSPIRE].

  87. A. Dasgupta, P.S.B. Dev, A. Ghoshal and A. Mazumdar, Gravitational wave pathway to testable leptogenesis, Phys. Rev. D 106 (2022) 075027 [arXiv:2206.07032] [INSPIRE].

  88. D. Borah, A. Dasgupta and I. Saha, Leptogenesis and dark matter through relativistic bubble walls with observable gravitational waves, JHEP 11 (2022) 136 [arXiv:2207.14226] [INSPIRE].

    ADS  Google Scholar 

  89. A. Ghoshal, R. Samanta and G. White, Bremsstrahlung High-frequency Gravitational Wave Signatures of High-scale Non-thermal Leptogenesis, arXiv:2211.10433 [INSPIRE].

  90. N. Bhaumik, A. Ghoshal and M. Lewicki, Doubly peaked induced stochastic gravitational wave background: testing baryogenesis from primordial black holes, JHEP 07 (2022) 130 [arXiv:2205.06260] [INSPIRE].

    ADS  Google Scholar 

  91. N. Bhaumik, A. Ghoshal, R.K. Jain and M. Lewicki, Distinct signatures of spinning PBH domination and evaporation: doubly peaked gravitational waves, dark relics and CMB complementarity, arXiv:2212.00775 [INSPIRE].

  92. T. Vachaspati and A. Vilenkin, Gravitational Radiation from Cosmic Strings, Phys. Rev. D 31 (1985) 3052 [INSPIRE].

  93. W. Chao, W.-F. Cui, H.-K. Guo and J. Shu, Gravitational wave imprint of new symmetry breaking, Chin. Phys. C 44 (2020) 123102 [arXiv:1707.09759] [INSPIRE].

  94. N. Okada and O. Seto, Probing the seesaw scale with gravitational waves, Phys. Rev. D 98 (2018) 063532 [arXiv:1807.00336] [INSPIRE].

  95. W. Buchmüller, V. Domcke, H. Murayama and K. Schmitz, Probing the scale of grand unification with gravitational waves, Phys. Lett. B 809 (2020) 135764 [arXiv:1912.03695] [INSPIRE].

  96. T. Hasegawa, N. Okada and O. Seto, Gravitational waves from the minimal gauged U(1)B−L model, Phys. Rev. D 99 (2019) 095039 [arXiv:1904.03020] [INSPIRE].

  97. N. Haba and T. Yamada, Gravitational waves from phase transition in minimal SUSY U(1)B−L model, Phys. Rev. D 101 (2020) 075027 [arXiv:1911.01292] [INSPIRE].

  98. S. Blasi, V. Brdar and K. Schmitz, Fingerprint of low-scale leptogenesis in the primordial gravitational-wave spectrum, Phys. Rev. Res. 2 (2020) 043321 [arXiv:2004.02889] [INSPIRE].

  99. J.A. Casas and A. Ibarra, Oscillating neutrinos and μ → e, γ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [INSPIRE].

  100. E.W. Kolb and S. Wolfram, Baryon Number Generation in the Early Universe, Nucl. Phys. B 172 (1980) 224 [Erratum ibid. 195 (1982) 542] [INSPIRE].

  101. M. Fujii, K. Hamaguchi and T. Yanagida, Leptogenesis with almost degenerate majorana neutrinos, Phys. Rev. D 65 (2002) 115012 [hep-ph/0202210] [INSPIRE].

  102. G.F. Giudice, M. Peloso, A. Riotto and I. Tkachev, Production of massive fermions at preheating and leptogenesis, JHEP 08 (1999) 014 [hep-ph/9905242] [INSPIRE].

  103. Particle Data Group collaboration, Review of Particle Physics, PTEP 2022 (2022) 083C01 [INSPIRE].

  104. I. Esteban et al., The fate of hints: updated global analysis of three-flavor neutrino oscillations, JHEP 09 (2020) 178 [arXiv:2007.14792] [INSPIRE].

    ADS  Google Scholar 

  105. Super-Kamiokande collaboration, Solar neutrino measurements in super-Kamiokande-I, Phys. Rev. D 73 (2006) 112001 [hep-ex/0508053] [INSPIRE].

  106. Super-Kamiokande collaboration, Evidence for an oscillatory signature in atmospheric neutrino oscillation, Phys. Rev. Lett. 93 (2004) 101801 [hep-ex/0404034] [INSPIRE].

  107. F. Hahn-Woernle and M. Plumacher, Effects of reheating on leptogenesis, Nucl. Phys. B 806 (2009) 68 [arXiv:0801.3972] [INSPIRE].

    ADS  MATH  Google Scholar 

  108. H. Fritzsch and P. Minkowski, Unified Interactions of Leptons and Hadrons, Annals Phys. 93 (1975) 193 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  109. H. Georgi, The State of the Art — Gauge Theories, AIP Conf. Proc. 23 (1975) 575 [INSPIRE].

    ADS  Google Scholar 

  110. M.A.G. Garcia, Y. Mambrini, K.A. Olive and M. Peloso, Enhancement of the Dark Matter Abundance Before Reheating: Applications to Gravitino Dark Matter, Phys. Rev. D 96 (2017) 103510 [arXiv:1709.01549] [INSPIRE].

  111. M.A.G. Garcia, K. Kaneta, Y. Mambrini and K.A. Olive, Reheating and Post-inflationary Production of Dark Matter, Phys. Rev. D 101 (2020) 123507 [arXiv:2004.08404] [INSPIRE].

  112. A. Datta, R. Roshan and A. Sil, Effects of Reheating on Charged Lepton Yukawa Equilibration and Leptogenesis, arXiv:2206.10650 [INSPIRE].

  113. G. Engelhard, Y. Grossman, E. Nardi and Y. Nir, The Importance of N2 leptogenesis, Phys. Rev. Lett. 99 (2007) 081802 [hep-ph/0612187] [INSPIRE].

  114. J.A. Harvey and M.S. Turner, Cosmological baryon and lepton number in the presence of electroweak fermion number violation, Phys. Rev. D 42 (1990) 3344 [INSPIRE].

    ADS  Google Scholar 

  115. G. Lazarides and Q. Shafi, Origin of matter in the inflationary cosmology, Phys. Lett. B 258 (1991) 305 [INSPIRE].

    ADS  Google Scholar 

  116. T. Asaka, H.B. Nielsen and Y. Takanishi, Nonthermal leptogenesis from the heavier Majorana neutrinos, Nucl. Phys. B 647 (2002) 252 [hep-ph/0207023] [INSPIRE].

  117. F. Ertas, F. Kahlhoefer and C. Tasillo, Turn up the volume: listening to phase transitions in hot dark sectors, JCAP 02 (2022) 014 [arXiv:2109.06208] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  118. T. Hambye et al., Constraints on neutrino masses from leptogenesis models, Nucl. Phys. B 695 (2004) 169 [hep-ph/0312203] [INSPIRE].

  119. S. Davidson and A. Ibarra, A Lower bound on the right-handed neutrino mass from leptogenesis, Phys. Lett. B 535 (2002) 25 [hep-ph/0202239] [INSPIRE].

  120. K. Hamaguchi, H. Murayama and T. Yanagida, Leptogenesis from N dominated early universe, Phys. Rev. D 65 (2002) 043512 [hep-ph/0109030] [INSPIRE].

  121. E. Nardi, Y. Nir, J. Racker and E. Roulet, On Higgs and sphaleron effects during the leptogenesis era, JHEP 01 (2006) 068 [hep-ph/0512052] [INSPIRE].

  122. E. Nardi, Y. Nir, E. Roulet and J. Racker, The Importance of flavor in leptogenesis, JHEP 01 (2006) 164 [hep-ph/0601084] [INSPIRE].

  123. A. Abada et al., Flavour Matters in Leptogenesis, JHEP 09 (2006) 010 [hep-ph/0605281] [INSPIRE].

  124. A. Abada et al., Flavor issues in leptogenesis, JCAP 04 (2006) 004 [hep-ph/0601083] [INSPIRE].

  125. T. Hugle, M. Platscher and K. Schmitz, Low-Scale Leptogenesis in the Scotogenic Neutrino Mass Model, Phys. Rev. D 98 (2018) 023020 [arXiv:1804.09660] [INSPIRE].

  126. T. Asaka, S. Blanchet and M. Shaposhnikov, The nuMSM, dark matter and neutrino masses, Phys. Lett. B 631 (2005) 151 [hep-ph/0503065] [INSPIRE].

  127. T. Asaka and M. Shaposhnikov, The νMSM, dark matter and baryon asymmetry of the universe, Phys. Lett. B 620 (2005) 17 [hep-ph/0505013] [INSPIRE].

  128. S. Dodelson and L.M. Widrow, Sterile-neutrinos as dark matter, Phys. Rev. Lett. 72 (1994) 17 [hep-ph/9303287] [INSPIRE].

  129. X.-D. Shi and G.M. Fuller, A New dark matter candidate: Nonthermal sterile neutrinos, Phys. Rev. Lett. 82 (1999) 2832 [astro-ph/9810076] [INSPIRE].

  130. A. Liu, Z.-L. Han, Y. Jin and F.-X. Yang, Leptogenesis and dark matter from a low scale seesaw mechanism, Phys. Rev. D 101 (2020) 095005 [arXiv:2001.04085] [INSPIRE].

  131. M. Kawasaki, T. Moroi and T. Yanagida, Constraint on the reheating temperature from the decay of the Polonyi field, Phys. Lett. B 370 (1996) 52 [hep-ph/9509399] [INSPIRE].

  132. S. Tremaine and J.E. Gunn, Dynamical Role of Light Neutral Leptons in Cosmology, Phys. Rev. Lett. 42 (1979) 407 [INSPIRE].

    ADS  Google Scholar 

  133. Q. Decant, J. Heisig, D.C. Hooper and L. Lopez-Honorez, Lyman-α constraints on freeze-in and superWIMPs, JCAP 03 (2022) 041 [arXiv:2111.09321] [INSPIRE].

    ADS  Google Scholar 

  134. R. Coy, A. Gupta and T. Hambye, Seesaw neutrino determination of the dark matter relic density, Phys. Rev. D 104 (2021) 083024 [arXiv:2104.00042] [INSPIRE].

  135. T. Simon et al., Constraining decaying dark matter with BOSS data and the effective field theory of large-scale structures, Phys. Rev. D 106 (2022) 023516 [arXiv:2203.07440] [INSPIRE].

  136. A. Mazumdar, S. Qutub and K. Saikawa, Nonthermal axion dark radiation and constraints, Phys. Rev. D 94 (2016) 065030 [arXiv:1607.06958] [INSPIRE].

  137. X. Luo, W. Rodejohann and X.-J. Xu, Dirac neutrinos and Neff. Part II. The freeze-in case, JCAP 03 (2021) 082 [arXiv:2011.13059] [INSPIRE].

  138. R.H. Cyburt, B.D. Fields, K.A. Olive and T.-H. Yeh, Big Bang Nucleosynthesis: 2015, Rev. Mod. Phys. 88 (2016) 015004 [arXiv:1505.01076] [INSPIRE].

  139. CMB-HD collaboration, Snowmass2021 CMB-HD White Paper, arXiv:2203.05728 [INSPIRE].

  140. CMB-Bharat collaboration, CMB-Bharat.

  141. K. Abazajian et al., CMB-S4 Science Case, Reference Design, and Project Plan, arXiv:1907.04473 [INSPIRE].

  142. K.N. Abazajian and M. Kaplinghat, Neutrino Physics from the Cosmic Microwave Background and Large-Scale Structure, Ann. Rev. Nucl. Part. Sci. 66 (2016) 401 [INSPIRE].

    ADS  Google Scholar 

  143. NASA PICO collaboration, PICO: Probe of Inflation and Cosmic Origins, arXiv:1902.10541 [INSPIRE].

  144. CORE collaboration, Exploring cosmic origins with CORE: Survey requirements and mission design, JCAP 04 (2018) 014 [arXiv:1706.04516] [INSPIRE].

  145. SPT-3G collaboration, SPT-3G: A Next-Generation Cosmic Microwave Background Polarization Experiment on the South Pole Telescope, Proc. SPIE Int. Soc. Opt. Eng. 9153 (2014) 91531 [arXiv:1407.2973] [INSPIRE].

  146. Simons Observatory collaboration, The Simons Observatory: Science goals and forecasts, JCAP 02 (2019) 056 [arXiv:1808.07445] [INSPIRE].

  147. S. Datta and R. Samanta, Gravitational waves-tomography of Low-Scale-Leptogenesis, JHEP 11 (2022) 159 [arXiv:2208.09949] [INSPIRE].

    ADS  Google Scholar 

  148. Planck collaboration, Planck 2018 results. X. Constraints on inflation, Astron. Astrophys. 641 (2020) A10 [arXiv:1807.06211] [INSPIRE].

  149. BICEP and Keck collaborations, Improved Constraints on Primordial Gravitational Waves using Planck, WMAP, and BICEP/Keck Observations through the 2018 Observing Season, Phys. Rev. Lett. 127 (2021) 151301 [arXiv:2110.00483] [INSPIRE].

  150. A.R. Liddle and D.H. Lyth, The Cold dark matter density perturbation, Phys. Rept. 231 (1993) 1 [astro-ph/9303019] [INSPIRE].

  151. R.H. Brandenberger, A. Nayeri, S.P. Patil and C. Vafa, Tensor Modes from a Primordial Hagedorn Phase of String Cosmology, Phys. Rev. Lett. 98 (2007) 231302 [hep-th/0604126] [INSPIRE].

  152. M. Baldi, F. Finelli and S. Matarrese, Inflation with violation of the null energy condition, Phys. Rev. D 72 (2005) 083504 [astro-ph/0505552] [INSPIRE].

  153. T. Kobayashi, M. Yamaguchi and J. Yokoyama, G-inflation: Inflation driven by the Galileon field, Phys. Rev. Lett. 105 (2010) 231302 [arXiv:1008.0603] [INSPIRE].

  154. G. Calcagni and S. Tsujikawa, Observational constraints on patch inflation in noncommutative spacetime, Phys. Rev. D 70 (2004) 103514 [astro-ph/0407543] [INSPIRE].

  155. G. Calcagni, S. Kuroyanagi, J. Ohashi and S. Tsujikawa, Strong Planck constraints on braneworld and non-commutative inflation, JCAP 03 (2014) 052 [arXiv:1310.5186] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  156. J.L. Cook and L. Sorbo, Particle production during inflation and gravitational waves detectable by ground-based interferometers, Phys. Rev. D 85 (2012) 023534 [Erratum ibid. 86 (2012) 069901] [arXiv:1109.0022] [INSPIRE].

  157. S. Mukohyama, R. Namba, M. Peloso and G. Shiu, Blue Tensor Spectrum from Particle Production during Inflation, JCAP 08 (2014) 036 [arXiv:1405.0346] [INSPIRE].

    ADS  Google Scholar 

  158. S. Kuroyanagi, T. Takahashi and S. Yokoyama, Blue-tilted inflationary tensor spectrum and reheating in the light of NANOGrav results, JCAP 01 (2021) 071 [arXiv:2011.03323] [INSPIRE].

    ADS  Google Scholar 

  159. M.S. Turner, M.J. White and J.E. Lidsey, Tensor perturbations in inflationary models as a probe of cosmology, Phys. Rev. D 48 (1993) 4613 [astro-ph/9306029] [INSPIRE].

  160. S. Chongchitnan and G. Efstathiou, Prospects for direct detection of primordial gravitational waves, Phys. Rev. D 73 (2006) 083511 [astro-ph/0602594] [INSPIRE].

  161. S. Kuroyanagi, T. Takahashi and S. Yokoyama, Blue-tilted Tensor Spectrum and Thermal History of the Universe, JCAP 02 (2015) 003 [arXiv:1407.4785] [INSPIRE].

    ADS  Google Scholar 

  162. T.W.B. Kibble, Topology of Cosmic Domains and Strings, J. Phys. A 9 (1976) 1387 [INSPIRE].

  163. M. Redi and A. Tesi, The meso-inflationary QCD axion, arXiv:2211.06421 [INSPIRE].

  164. G.W. Gibbons and S.W. Hawking, Cosmological Event Horizons, Thermodynamics, and Particle Creation, Phys. Rev. D 15 (1977) 2738 [INSPIRE].

  165. LIGO Scientific and Virgo collaborations, Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].

  166. LIGO Scientific and Virgo collaborations, GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence, Phys. Rev. Lett. 116 (2016) 241103 [arXiv:1606.04855] [INSPIRE].

  167. LIGO Scientific and VIRGO collaborations, GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2, Phys. Rev. Lett. 118 (2017) 221101 [Erratum ibid. 121 (2018) 129901] [arXiv:1706.01812] [INSPIRE].

  168. LIGO Scientific and Virgo collaborations, GW170608: Observation of a 19-solar-mass Binary Black Hole Coalescence, Astrophys. J. Lett. 851 (2017) L35 [arXiv:1711.05578] [INSPIRE].

  169. LIGO Scientific and Virgo collaborations, GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence, Phys. Rev. Lett. 119 (2017) 141101 [arXiv:1709.09660] [INSPIRE].

  170. LIGO Scientific and Virgo collaborations, GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett. 119 (2017) 161101 [arXiv:1710.05832] [INSPIRE].

  171. LIGO Scientific collaboration, Advanced LIGO: The next generation of gravitational wave detectors, Class. Quant. Grav. 27 (2010) 084006 [INSPIRE].

  172. LIGO Scientific collaboration, Advanced LIGO, Class. Quant. Grav. 32 (2015) 074001 [arXiv:1411.4547] [INSPIRE].

  173. VIRGO collaboration, Advanced Virgo: a second-generation interferometric gravitational wave detector, Class. Quant. Grav. 32 (2015) 024001 [arXiv:1408.3978] [INSPIRE].

  174. LIGO Scientific and Virgo collaborations, Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo, SoftwareX 13 (2021) 100658 [arXiv:1912.11716] [INSPIRE].

  175. L. Badurina et al., Prospective sensitivities of atom interferometers to gravitational waves and ultralight dark matter, Phil. Trans. A. Math. Phys. Eng. Sci. 380 (2021) 20210060 [arXiv:2108.02468] [INSPIRE].

    Google Scholar 

  176. P.W. Graham, J.M. Hogan, M.A. Kasevich and S. Rajendran, Resonant mode for gravitational wave detectors based on atom interferometry, Phys. Rev. D 94 (2016) 104022 [arXiv:1606.01860] [INSPIRE].

  177. MAGIS collaboration, Mid-band gravitational wave detection with precision atomic sensors, arXiv:1711.02225 [INSPIRE].

  178. L. Badurina et al., AION: An Atom Interferometer Observatory and Network, JCAP 05 (2020) 011 [arXiv:1911.11755] [INSPIRE].

    ADS  Google Scholar 

  179. M. Punturo et al., The Einstein Telescope: A third-generation gravitational wave observatory, Class. Quant. Grav. 27 (2010) 194002 [INSPIRE].

  180. S. Hild et al., Sensitivity Studies for Third-Generation Gravitational Wave Observatories, Class. Quant. Grav. 28 (2011) 094013 [arXiv:1012.0908] [INSPIRE].

  181. LIGO Scientific collaboration, Exploring the Sensitivity of Next Generation Gravitational Wave Detectors, Class. Quant. Grav. 34 (2017) 044001 [arXiv:1607.08697] [INSPIRE].

  182. D. Reitze et al., Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO, Bull. Am. Astron. Soc. 51 (2019) 035 [arXiv:1907.04833] [INSPIRE].

    Google Scholar 

  183. LISA collaboration, Laser Interferometer Space Antenna, arXiv:1702.00786 [INSPIRE].

  184. J. Baker et al., The Laser Interferometer Space Antenna: Unveiling the Millihertz Gravitational Wave Sky, arXiv:1907.06482 [INSPIRE].

  185. J. Crowder and N.J. Cornish, Beyond LISA: Exploring future gravitational wave missions, Phys. Rev. D 72 (2005) 083005 [gr-qc/0506015] [INSPIRE].

  186. V. Corbin and N.J. Cornish, Detecting the cosmic gravitational wave background with the big bang observer, Class. Quant. Grav. 23 (2006) 2435 [gr-qc/0512039] [INSPIRE].

  187. G.M. Harry et al., Laser interferometry for the big bang observer, Class. Quant. Grav. 23 (2006) 4887 [Erratum ibid. 23 (2006) 7361] [INSPIRE].

  188. N. Seto, S. Kawamura and T. Nakamura, Possibility of direct measurement of the acceleration of the universe using 0.1 Hz band laser interferometer gravitational wave antenna in space, Phys. Rev. Lett. 87 (2001) 221103 [astro-ph/0108011] [INSPIRE].

  189. H. Kudoh, A. Taruya, T. Hiramatsu and Y. Himemoto, Detecting a gravitational-wave background with next-generation space interferometers, Phys. Rev. D 73 (2006) 064006 [gr-qc/0511145] [INSPIRE].

  190. S. Kawamura et al., The Japanese space gravitational wave antenna DECIGO, Class. Quant. Grav. 23 (2006) S125 [INSPIRE].

  191. K. Yagi and N. Seto, Detector configuration of DECIGO/BBO and identification of cosmological neutron-star binaries, Phys. Rev. D 83 (2011) 044011 [Erratum ibid. 95 (2017) 109901] [arXiv:1101.3940] [INSPIRE].

  192. S. Kawamura et al., Current status of space gravitational wave antenna DECIGO and B-DECIGO, PTEP 2021 (2021) 05A105 [arXiv:2006.13545] [INSPIRE].

  193. AEDGE collaboration, AEDGE: Atomic Experiment for Dark Matter and Gravity Exploration in Space, EPJ Quant. Technol. 7 (2020) 6 [arXiv:1908.00802] [INSPIRE].

  194. A. Sesana et al., Unveiling the gravitational universe at μ-Hz frequencies, Exper. Astron. 51 (2021) 1333 [arXiv:1908.11391] [INSPIRE].

    ADS  Google Scholar 

  195. J. Garcia-Bellido, H. Murayama and G. White, Exploring the early Universe with Gaia and Theia, JCAP 12 (2021) 023 [arXiv:2104.04778] [INSPIRE].

    ADS  Google Scholar 

  196. C.L. Carilli and S. Rawlings, Science with the Square Kilometer Array: Motivation, key science projects, standards and assumptions, New Astron. Rev. 48 (2004) 979 [astro-ph/0409274] [INSPIRE].

  197. G. Janssen et al., Gravitational wave astronomy with the SKA, PoS AASKA14 (2015) 037 [arXiv:1501.00127] [INSPIRE].

  198. A. Weltman et al., Fundamental physics with the Square Kilometre Array, Publ. Astron. Soc. Austral. 37 (2020) e002 [arXiv:1810.02680] [INSPIRE].

  199. M. Kramer and D.J. Champion, The European Pulsar Timing Array and the Large European Array for Pulsars, Class. Quant. Grav. 30 (2013) 224009 [INSPIRE].

  200. L. Lentati et al., European Pulsar Timing Array Limits On An Isotropic Stochastic Gravitational-Wave Background, Mon. Not. Roy. Astron. Soc. 453 (2015) 2576 [arXiv:1504.03692] [INSPIRE].

    ADS  Google Scholar 

  201. S. Babak et al., European Pulsar Timing Array Limits on Continuous Gravitational Waves from Individual Supermassive Black Hole Binaries, Mon. Not. Roy. Astron. Soc. 455 (2016) 1665 [arXiv:1509.02165] [INSPIRE].

    ADS  Google Scholar 

  202. M.A. McLaughlin, The North American Nanohertz Observatory for Gravitational Waves, Class. Quant. Grav. 30 (2013) 224008 [arXiv:1310.0758] [INSPIRE].

  203. NANOGRAV collaboration, The NANOGrav 11-year Data Set: Pulsar-timing Constraints On The Stochastic Gravitational-wave Background, Astrophys. J. 859 (2018) 47 [arXiv:1801.02617] [INSPIRE].

  204. K. Aggarwal et al., The NANOGrav 11-Year Data Set: Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries, Astrophys. J. 880 (2019) 2 [arXiv:1812.11585] [INSPIRE].

    Google Scholar 

  205. A. Brazier et al., The NANOGrav Program for Gravitational Waves and Fundamental Physics, arXiv:1908.05356 [INSPIRE].

  206. NANOGrav collaboration, The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background, Astrophys. J. Lett. 905 (2020) L34 [arXiv:2009.04496] [INSPIRE].

  207. BICEP2 and Keck Array collaborations, BICEP2 / Keck Array x: Constraints on Primordial Gravitational Waves using Planck, WMAP, and New BICEP2/Keck Observations through the 2015 Season, Phys. Rev. Lett. 121 (2018) 221301 [arXiv:1810.05216] [INSPIRE].

  208. T.J. Clarke, E.J. Copeland and A. Moss, Constraints on primordial gravitational waves from the Cosmic Microwave Background, JCAP 10 (2020) 002 [arXiv:2004.11396] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  209. M. Hazumi et al., LiteBIRD: A Satellite for the Studies of B-Mode Polarization and Inflation from Cosmic Background Radiation Detection, J. Low Temp. Phys. 194 (2019) 443 [INSPIRE].

    ADS  Google Scholar 

  210. A. Kogut et al., The Primordial Inflation Explorer (PIXIE): A Nulling Polarimeter for Cosmic Microwave Background Observations, JCAP 07 (2011) 025 [arXiv:1105.2044] [INSPIRE].

    ADS  Google Scholar 

  211. A. Kogut et al., CMB Spectral Distortions: Status and Prospects, arXiv:1907.13195 [INSPIRE].

  212. J. Chluba et al., Spectral Distortions of the CMB as a Probe of Inflation, Recombination, Structure Formation and Particle Physics: Astro2020 Science White Paper, Bull. Am. Astron. Soc. 51 (2019) 184 [arXiv:1903.04218] [INSPIRE].

  213. E. Thrane and J.D. Romano, Sensitivity curves for searches for gravitational-wave backgrounds, Phys. Rev. D 88 (2013) 124032 [arXiv:1310.5300] [INSPIRE].

  214. C. Caprini et al., Science with the space-based interferometer eLISA. II: Gravitational waves from cosmological phase transitions, JCAP 04 (2016) 001 [arXiv:1512.06239] [INSPIRE].

    ADS  Google Scholar 

  215. M. Maggiore, Gravitational wave experiments and early universe cosmology, Phys. Rept. 331 (2000) 283 [gr-qc/9909001] [INSPIRE].

  216. S. Weinberg, Damping of tensor modes in cosmology, Phys. Rev. D 69 (2004) 023503 [astro-ph/0306304] [INSPIRE].

  217. Y. Watanabe and E. Komatsu, Improved Calculation of the Primordial Gravitational Wave Spectrum in the Standard Model, Phys. Rev. D 73 (2006) 123515 [astro-ph/0604176] [INSPIRE].

  218. B.A. Stefanek and W.W. Repko, Analytic description of the damping of gravitational waves by free streaming neutrinos, Phys. Rev. D 88 (2013) 083536 [arXiv:1207.7285] [INSPIRE].

  219. J.B. Dent, L.M. Krauss, S. Sabharwal and T. Vachaspati, Damping of Primordial Gravitational Waves from Generalized Sources, Phys. Rev. D 88 (2013) 084008 [arXiv:1307.7571] [INSPIRE].

  220. A. Hook, G. Marques-Tavares and D. Racco, Causal gravitational waves as a probe of free streaming particles and the expansion of the Universe, JHEP 02 (2021) 117 [arXiv:2010.03568] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  221. T. Asaka and H. Okui, Neutrino masses and gravitational wave background, Phys. Lett. B 814 (2021) 136074 [arXiv:2012.13527] [INSPIRE].

  222. M. Kawasaki, K. Kohri and N. Sugiyama, MeV scale reheating temperature and thermalization of neutrino background, Phys. Rev. D 62 (2000) 023506 [astro-ph/0002127] [INSPIRE].

  223. S. Hannestad, What is the lowest possible reheating temperature?, Phys. Rev. D 70 (2004) 043506 [astro-ph/0403291] [INSPIRE].

  224. J.A. Casas, V. Di Clemente, A. Ibarra and M. Quiros, Massive neutrinos and the Higgs mass window, Phys. Rev. D 62 (2000) 053005 [hep-ph/9904295] [INSPIRE].

  225. J. Elias-Miro et al., Higgs mass implications on the stability of the electroweak vacuum, Phys. Lett. B 709 (2012) 222 [arXiv:1112.3022] [INSPIRE].

    ADS  Google Scholar 

  226. F. Vissani, Do experiments suggest a hierarchy problem?, Phys. Rev. D 57 (1998) 7027 [hep-ph/9709409] [INSPIRE].

  227. J.D. Clarke, R. Foot and R.R. Volkas, Electroweak naturalness in the three-flavor type I seesaw model and implications for leptogenesis, Phys. Rev. D 91 (2015) 073009 [arXiv:1502.01352] [INSPIRE].

  228. I. Brivio and M. Trott, Radiatively Generating the Higgs Potential and Electroweak Scale via the Seesaw Mechanism, Phys. Rev. Lett. 119 (2017) 141801 [arXiv:1703.10924] [INSPIRE].

  229. I. Brivio and M. Trott, Examining the neutrino option, JHEP 02 (2019) 107 [arXiv:1809.03450] [INSPIRE].

    ADS  Google Scholar 

Download references

Acknowledgments

We would like to thank Bowen Fu, Stephen King, Alessandro Strumia and Andreas Trautner for useful comments on the manuscript.

Author information

Authors and Affiliations

  1. Bethe Center for Theoretical Physics und Physikalisches Institut der Universitt Bonn, Nussallee 12, Bonn, Germany

    Maximilian Berbig

  2. Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093, Warsaw, Poland

    Anish Ghoshal

Authors
  1. Maximilian Berbig
    View author publications

    Search author on:PubMed Google Scholar

  2. Anish Ghoshal
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Anish Ghoshal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2301.05672

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berbig, M., Ghoshal, A. Impact of high-scale Seesaw and Leptogenesis on inflationary tensor perturbations as detectable gravitational waves. J. High Energ. Phys. 2023, 172 (2023). https://doi.org/10.1007/JHEP05(2023)172

Download citation

  • Received: 29 January 2023

  • Accepted: 04 May 2023

  • Published: 22 May 2023

  • Version of record: 22 May 2023

  • DOI: https://doi.org/10.1007/JHEP05(2023)172

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Baryo- and Leptogenesis
  • Early Universe Particle Physics
  • Cosmology of Theories BSM
  • Neutrino Interactions

Profiles

  1. Maximilian Berbig View author profile
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载