+
X
Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Electroweak renormalization based on gauge-invariant vacuum expectation values of non-linear Higgs representations. Part I. Standard Model

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 20 May 2022
  • Volume 2022, article number 125, (2022)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
Electroweak renormalization based on gauge-invariant vacuum expectation values of non-linear Higgs representations. Part I. Standard Model
Download PDF
  • Stefan Dittmaier1 &
  • Heidi Rzehak2 
  • 388 Accesses

  • 14 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

The renormalization of vacuum expectation value parameters, such as v in the Standard Model (SM), is an important ingredient in electroweak renormalization, where this issue is connected to the treatment of tadpoles. Tadpole counterterms can be generated in two different ways in the Lagrangian: in the course of parameter renormalization, or alternatively via Higgs field redefinitions. The former typically leads to small corrections originating from tadpoles, but in general suffers from gauge dependences if \( \overline{\mathrm{MS}} \) renormalization conditions are used for mass parameters. The latter is free from gauge dependences, but is prone to very large corrections in \( \overline{\mathrm{MS}} \) schemes, jeopardizing perturbative stability in predictions. In this paper we propose a new scheme for tadpole renormalization, dubbed Gauge-Invariant Vacuum expectation value Scheme (GIVS), which is a hybrid scheme of the two mentioned types, with the benefits of being gauge independent and perturbatively stable. The GIVS is based on the gauge-invariance property of Higgs fields, and the corresponding parameters like v, in non-linear representations of Higgs multiplets. We demonstrate the perturbative stability of the GIVS in the SM by discussing the conversion between on-shell and \( \overline{\mathrm{MS}} \) renormalized masses.

Article PDF

Download to read the full article text

Similar content being viewed by others

Electroweak renormalization based on gauge-invariant vacuum expectation values of non-linear Higgs representations. Part II. Extended Higgs sectors

Article Open access 24 August 2022

Gauge-independent \( \overline{\mathrm{MS}} \) renormalization in the 2HDM

Article Open access 19 September 2016

Renormalization of the multi-Higgs-doublet Standard Model and one-loop lepton mass corrections

Article Open access 14 November 2018

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Elementary Particles, Quantum Field Theory
  • Field Theory and Polynomials
  • Particle Physics
  • Scale Invariance
  • Theoretical Particle Physics
  • Quantum Electrodynamics, Relativistic and Many-body Calculations
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. D.A. Ross and J.C. Taylor, Renormalization of a unified theory of weak and electromagnetic interactions, Nucl. Phys. B 51 (1973) 125 [Erratum ibid. 58 (1973) 643] [INSPIRE].

  2. A. Sirlin, Radiative Corrections in the SU(2)L × U(1) Theory: A Simple Renormalization Framework, Phys. Rev. D 22 (1980) 971 [INSPIRE].

  3. K.I. Aoki, Z. Hioki, M. Konuma, R. Kawabe and T. Muta, Electroweak Theory. Framework of On-Shell Renormalization and Study of Higher Order Effects, Prog. Theor. Phys. Suppl. 73 (1982) 1 [INSPIRE].

  4. M. Böhm, H. Spiesberger and W. Hollik, On the One Loop Renormalization of the Electroweak Standard Model and Its Application to Leptonic Processes, Fortsch. Phys. 34 (1986) 687 [INSPIRE].

  5. F. Jegerlehner, Renormalizing the standard model, in Testing the Standard Model — TASI-90: Theoretical Advanced Study Inst. in Elementary Particle Physics, Boulder, Colorado, June 3–29, 1990, vol. C900603, pp. 476–590, (1990).

  6. A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortsch. Phys. 41 (1993) 307 [arXiv:0709.1075] [INSPIRE].

    ADS  Google Scholar 

  7. A. Denner, G. Weiglein and S. Dittmaier, Application of the background field method to the electroweak standard model, Nucl. Phys. B 440 (1995) 95 [hep-ph/9410338] [INSPIRE].

  8. A. Denner and S. Dittmaier, Electroweak Radiative Corrections for Collider Physics, Phys. Rept. 864 (2020) 1 [arXiv:1912.06823] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  9. M. Krause, R. Lorenz, M. Mühlleitner, R. Santos and H. Ziesche, Gauge-independent Renormalization of the 2-Higgs-Doublet Model, JHEP 09 (2016) 143 [arXiv:1605.04853] [INSPIRE].

    Article  ADS  Google Scholar 

  10. A. Denner, L. Jenniches, J.-N. Lang and C. Sturm, Gauge-independent \( \overline{MS} \) renormalization in the 2HDM, JHEP 09 (2016) 115 [arXiv:1607.07352] [INSPIRE].

  11. A. Denner, S. Dittmaier and J.-N. Lang, Renormalization of mixing angles, JHEP 11 (2018) 104 [arXiv:1808.03466] [INSPIRE].

    Article  ADS  Google Scholar 

  12. J. Fleischer and F. Jegerlehner, Radiative Corrections to Higgs Decays in the Extended Weinberg-Salam Model, Phys. Rev. D 23 (1981) 2001 [INSPIRE].

  13. S. Actis, A. Ferroglia, M. Passera and G. Passarino, Two-Loop Renormalization in the Standard Model. Part I: Prolegomena, Nucl. Phys. B 777 (2007) 1 [hep-ph/0612122] [INSPIRE].

  14. F. Jegerlehner, M.Y. Kalmykov and B.A. Kniehl, On the difference between the pole and the \( \overline{MS} \) masses of the top quark at the electroweak scale, Phys. Lett. B 722 (2013) 123 [arXiv:1212.4319] [INSPIRE].

  15. B.A. Kniehl, A.F. Pikelner and O.L. Veretin, Two-loop electroweak threshold corrections in the Standard Model, Nucl. Phys. B 896 (2015) 19 [arXiv:1503.02138] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  16. A.L. Kataev and V.S. Molokoedov, Notes on interplay of the QCD and EW perturbative corrections to the pole-running top-quark mass ratio, arXiv:2201.12073 [INSPIRE].

  17. L. Altenkamp, S. Dittmaier and H. Rzehak, Renormalization schemes for the Two-Higgs-Doublet Model and applications to h → WW/ZZ → 4 fermions, JHEP 09 (2017) 134 [arXiv:1704.02645] [INSPIRE].

    Article  ADS  Google Scholar 

  18. L. Altenkamp, S. Dittmaier and H. Rzehak, Precision calculations for h → WW/ZZ → 4 fermions in the Two-Higgs-Doublet Model with Prophecy4f, JHEP 03 (2018) 110 [arXiv:1710.07598] [INSPIRE].

    Article  ADS  Google Scholar 

  19. B.W. Lee and J. Zinn-Justin, Spontaneously Broken Gauge Symmetries Part 3: Equivalence, Phys. Rev. D 5 (1972) 3155 [INSPIRE].

  20. C. Grosse-Knetter and R. Kögerler, Unitary gauge, Stuckelberg formalism and gauge invariant models for effective lagrangians, Phys. Rev. D 48 (1993) 2865 [hep-ph/9212268] [INSPIRE].

  21. S. Dittmaier and C. Grosse-Knetter, Deriving nondecoupling effects of heavy fields from the path integral: A heavy Higgs field in an SU(2) gauge theory, Phys. Rev. D 52 (1995) 7276 [hep-ph/9501285] [INSPIRE].

  22. S. Dittmaier and C. Grosse-Knetter, Integrating out the standard Higgs field in the path integral, Nucl. Phys. B 459 (1996) 497 [hep-ph/9505266] [INSPIRE].

  23. H. Kluberg-Stern and J.B. Zuber, Ward Identities and Some Clues to the Renormalization of Gauge Invariant Operators, Phys. Rev. D 12 (1975) 467 [INSPIRE].

  24. N.K. Nielsen, On the Gauge Dependence of Spontaneous Symmetry Breaking in Gauge Theories, Nucl. Phys. B 101 (1975) 173 [INSPIRE].

  25. P. Gambino and P.A. Grassi, The Nielsen identities of the SM and the definition of mass, Phys. Rev. D 62 (2000) 076002 [hep-ph/9907254] [INSPIRE].

  26. S. Weinberg, The quantum theory of fields. Vol. 2: Modern applications, Cambridge University Press, Cambridge, U.K. (2013).

  27. M. Böhm, A. Denner and H. Joos, Gauge theories of the strong and electroweak interaction, Teubner, Germany (2001).

    Book  Google Scholar 

  28. M.D. Schwartz, Quantum Field Theory and the Standard Model, Cambridge University Press, Cambridge, U.K. (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Albert-Ludwigs-Universität Freiburg, Physikalisches Institut, Hermann-Herder-Str.3, 79104, Freiburg, Germany

    Stefan Dittmaier

  2. University of Tübingen, Institute for Theoretical Physics, Auf der Morgenstelle 14, 72076, Tübingen, Germany

    Heidi Rzehak

Authors
  1. Stefan Dittmaier
    View author publications

    Search author on:PubMed Google Scholar

  2. Heidi Rzehak
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Heidi Rzehak.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2203.07236

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dittmaier, S., Rzehak, H. Electroweak renormalization based on gauge-invariant vacuum expectation values of non-linear Higgs representations. Part I. Standard Model. J. High Energ. Phys. 2022, 125 (2022). https://doi.org/10.1007/JHEP05(2022)125

Download citation

  • Received: 21 March 2022

  • Accepted: 18 April 2022

  • Published: 20 May 2022

  • Version of record: 20 May 2022

  • DOI: https://doi.org/10.1007/JHEP05(2022)125

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Electroweak Precision Physics
  • Higher Order Electroweak Calculations
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载