+
X
Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Spiky strings in de Sitter space

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 06 May 2021
  • Volume 2021, article number 47, (2021)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
Spiky strings in de Sitter space
Download PDF
  • Mitsuhiro Kato1,
  • Kanji Nishii2,
  • Toshifumi Noumi2,
  • Toshiaki Takeuchi2 &
  • …
  • Siyi Zhou  ORCID: orcid.org/0000-0001-8982-07233 
  • 432 Accesses

  • 5 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We study semiclassical spiky strings in de Sitter space and the corresponding Regge trajectories, generalizing the analysis in anti-de Sitter space. In particular we demonstrate that each Regge trajectory has a maximum spin due to de Sitter acceleration, similarly to the folded string studied earlier. While this property is useful for the spectrum to satisfy the Higuchi bound, it makes a nontrivial question how to maintain mildness of high-energy string scattering which we are familiar with in flat space and anti-de Sitter space. Our analysis implies that in order to have infinitely many higher spin states, one needs to consider infinitely many Regge trajectories with an increasing folding number.

Article PDF

Download to read the full article text

Similar content being viewed by others

On stringy de Sitter spacetimes

Article Open access 30 December 2019

The broken string in Anti-de Sitter space

Article Open access 07 February 2018

Regge trajectories for the (2, 0) theories

Article Open access 07 January 2022

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Classical and Quantum Gravity
  • Differential Geometry
  • Field Theory and Polynomials
  • Mathematical Physics
  • String Theory
  • Partial Differential Equations on Manifolds
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. U.H. Danielsson and T. Van Riet, What if string theory has no de Sitter vacua?, Int. J. Mod. Phys. D 27 (2018) 1830007 [arXiv:1804.01120] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].

  4. J.P. Conlon, F. Quevedo and K. Suruliz, Large-volume flux compactifications: Moduli spectrum and D3/D7 soft supersymmetry breaking, JHEP 08 (2005) 007 [hep-th/0505076] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, de Sitter Space and the Swampland, arXiv:1806.08362 [INSPIRE].

  6. S.K. Garg and C. Krishnan, Bounds on Slow Roll and the de Sitter Swampland, JHEP 11 (2019) 075 [arXiv:1807.05193] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. H. Ooguri, E. Palti, G. Shiu and C. Vafa, Distance and de Sitter Conjectures on the Swampland, Phys. Lett. B 788 (2019) 180 [arXiv:1810.05506] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. T. Noumi, T. Takeuchi and S. Zhou, String Regge trajectory on de Sitter space and implications to inflation, Phys. Rev. D 102 (2020) 126012 [arXiv:1907.02535] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  9. H.J. de Vega and N.G. Sanchez, A New Approach to String Quantization in Curved Space-Times, Phys. Lett. B 197 (1987) 320 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  10. H.J. de Vega and N.G. Sanchez, Quantum Dynamics of Strings in Black Hole Space-times, Nucl. Phys. B 309 (1988) 552 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. F. Combes, H.J. de Vega, A.V. Mikhailov and N.G. Sanchez, Multistring solutions by soliton methods in de Sitter space-time, Phys. Rev. D 50 (1994) 2754 [hep-th/9310073] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  12. H.J. de Vega, A.L. Larsen and N.G. Sanchez, Semiclassical quantization of circular strings in de Sitter and anti-de Sitter space-times, Phys. Rev. D 51 (1995) 6917 [hep-th/9410219] [INSPIRE].

    Article  ADS  Google Scholar 

  13. H.J. de Vega and I.L. Egusquiza, Planetoid string solutions in (3 + 1) axisymmetric space-times, Phys. Rev. D 54 (1996) 7513 [hep-th/9607056] [INSPIRE].

    Article  ADS  Google Scholar 

  14. J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  15. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, A Semiclassical limit of the gauge/string correspondence, Nucl. Phys. B 636 (2002) 99 [hep-th/0204051] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  16. A.A. Tseytlin, Review of AdS/CFT Integrability, Chapter II.1: Classical AdS5xS5 string solutions, Lett. Math. Phys. 99 (2012) 103 [arXiv:1012.3986] [INSPIRE].

  17. D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from N = 4 superYang-Mills, JHEP 04 (2002) 013 [hep-th/0202021] [INSPIRE].

    Article  ADS  Google Scholar 

  18. S. Frolov and A.A. Tseytlin, Semiclassical quantization of rotating superstring in AdS5 × S5, JHEP 06 (2002) 007 [hep-th/0204226] [INSPIRE].

    Article  ADS  Google Scholar 

  19. J.A. Minahan, Circular semiclassical string solutions on AdS5 × S5 , Nucl. Phys. B 648 (2003) 203 [hep-th/0209047] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  20. S. Frolov and A.A. Tseytlin, Multispin string solutions in AdS5 × S5, Nucl. Phys. B 668 (2003) 77 [hep-th/0304255] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  21. S. Frolov and A.A. Tseytlin, Rotating string solutions: AdS/CFT duality in nonsupersymmetric sectors, Phys. Lett. B 570 (2003) 96 [hep-th/0306143] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. J. Engquist, J.A. Minahan and K. Zarembo, Yang-Mills duals for semiclassical strings on AdS5 × S5, JHEP 11 (2003) 063 [hep-th/0310188] [INSPIRE].

    Article  ADS  Google Scholar 

  23. G. Arutyunov, J. Russo and A.A. Tseytlin, Spinning strings in AdS5 × S5: New integrable system relations, Phys. Rev. D 69 (2004) 086009 [hep-th/0311004] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. A.L. Larsen and A. Khan, Novel explicit multispin string solitons in AdS5, Nucl. Phys. B 686 (2004) 75 [hep-th/0312184] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  25. S. Ryang, Folded three spin string solutions in AdS5 × S5, JHEP 04 (2004) 053 [hep-th/0403180] [INSPIRE].

    Article  ADS  Google Scholar 

  26. M. Kruczenski and A.A. Tseytlin, Semiclassical relativistic strings in S5 and long coherent operators in N = 4 SYM theory, JHEP 09 (2004) 038 [hep-th/0406189] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. M. Kruczenski, Spiky strings and single trace operators in gauge theories, JHEP 08 (2005) 014 [hep-th/0410226] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  28. S. Ryang, Wound and rotating strings in AdS5 × S5, JHEP 08 (2005) 047 [hep-th/0503239] [INSPIRE].

    Article  ADS  Google Scholar 

  29. I.Y. Park, A. Tirziu and A.A. Tseytlin, Semiclassical circular strings in AdS5 and ‘long’ gauge field strength operators, Phys. Rev. D 71 (2005) 126008 [hep-th/0505130] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  30. D.M. Hofman and J.M. Maldacena, Giant Magnons, J. Phys. A 39 (2006) 13095 [hep-th/0604135] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  31. N. Dorey, Magnon Bound States and the AdS/CFT Correspondence, J. Phys. A 39 (2006) 13119 [hep-th/0604175] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  32. T. McLoughlin and X. Wu, Kinky Strings in AdS5 × S5, JHEP 08 (2006) 063 [hep-th/0604193] [INSPIRE].

    Article  ADS  Google Scholar 

  33. H.-Y. Chen, N. Dorey and K. Okamura, Dyonic giant magnons, JHEP 09 (2006) 024 [hep-th/0605155] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  34. G. Arutyunov, S. Frolov and M. Zamaklar, Finite-size Effects from Giant Magnons, Nucl. Phys. B 778 (2007) 1 [hep-th/0606126] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. J.A. Minahan, A. Tirziu and A.A. Tseytlin, Infinite spin limit of semiclassical string states, JHEP 08 (2006) 049 [hep-th/0606145] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  36. M. Spradlin and A. Volovich, Dressing the Giant Magnon, JHEP 10 (2006) 012 [hep-th/0607009] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  37. N.P. Bobev and R.C. Rashkov, Multispin Giant Magnons, Phys. Rev. D 74 (2006) 046011 [hep-th/0607018] [INSPIRE].

    Article  ADS  Google Scholar 

  38. M. Kruczenski, J. Russo and A.A. Tseytlin, Spiky strings and giant magnons on S5, JHEP 10 (2006) 002 [hep-th/0607044] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  39. K. Okamura and R. Suzuki, A Perspective on Classical Strings from Complex sine-Gordon Solitons, Phys. Rev. D 75 (2007) 046001 [hep-th/0609026] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  40. S. Ryang, Three-spin giant magnons in AdS5 × S5, JHEP 12 (2006) 043 [hep-th/0610037] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  41. R. Ishizeki and M. Kruczenski, Single spike solutions for strings on S2 and S3, Phys. Rev. D 76 (2007) 126006 [arXiv:0705.2429] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  42. A.E. Mosaffa and B. Safarzadeh, Dual spikes: New spiky string solutions, JHEP 08 (2007) 017 [arXiv:0705.3131] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. H. Hayashi, K. Okamura, R. Suzuki and B. Vicedo, Large Winding Sector of AdS/CFT, JHEP 11 (2007) 033 [arXiv:0709.4033] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. R. Ishizeki, M. Kruczenski, M. Spradlin and A. Volovich, Scattering of single spikes, JHEP 02 (2008) 009 [arXiv:0710.2300] [INSPIRE].

    Article  ADS  Google Scholar 

  45. A. Mikhailov and S. Schäfer-Nameki, sine-Gordon-like action for the Superstring in AdS5 × S5, JHEP 05 (2008) 075 [arXiv:0711.0195] [INSPIRE].

  46. A. Jevicki, K. Jin, C. Kalousios and A. Volovich, Generating AdS String Solutions, JHEP 03 (2008) 032 [arXiv:0712.1193] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  47. M. Kruczenski and A.A. Tseytlin, Spiky strings, light-like Wilson loops and pp-wave anomaly, Phys. Rev. D 77 (2008) 126005 [arXiv:0802.2039] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  48. A. Jevicki and K. Jin, Solitons and AdS String Solutions, Int. J. Mod. Phys. A 23 (2008) 2289 [arXiv:0804.0412] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  49. J.L. Miramontes, Pohlmeyer reduction revisited, JHEP 10 (2008) 087 [arXiv:0808.3365] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. S. Ryang, Conformal SO(2, 4) Transformations for the Helical AdS String Solution, JHEP 05 (2008) 021 [arXiv:0803.3855] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  51. M.C. Abbott and I.V. Aniceto, Vibrating giant spikes and the large-winding sector, JHEP 06 (2008) 088 [arXiv:0803.4222] [INSPIRE].

    Article  ADS  Google Scholar 

  52. R. Ishizeki, M. Kruczenski, A. Tirziu and A.A. Tseytlin, Spiky strings in AdS3 × S1 and their AdS-pp-wave limits, Phys. Rev. D 79 (2009) 026006 [arXiv:0812.2431] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. T.J. Hollowood and J.L. Miramontes, Magnons, their Solitonic Avatars and the Pohlmeyer Reduction, JHEP 04 (2009) 060 [arXiv:0902.2405] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  54. A. Jevicki and K. Jin, Moduli Dynamics of AdS3 Strings, JHEP 06 (2009) 064 [arXiv:0903.3389] [INSPIRE].

    Article  ADS  Google Scholar 

  55. A. Tirziu and A.A. Tseytlin, Semiclassical rigid strings with two spins in AdS5, Phys. Rev. D 81 (2010) 026006 [arXiv:0911.2417] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  56. M. Kruczenski and A. Tirziu, Spiky strings in Bethe Ansatz at strong coupling, Phys. Rev. D 81 (2010) 106004 [arXiv:1002.4843] [INSPIRE].

    Article  ADS  Google Scholar 

  57. K. Zarembo, Holographic three-point functions of semiclassical states, JHEP 09 (2010) 030 [arXiv:1008.1059] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. M.S. Costa, R. Monteiro, J.E. Santos and D. Zoakos, On three-point correlation functions in the gauge/gravity duality, JHEP 11 (2010) 141 [arXiv:1008.1070] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. R.A. Janik and A. Wereszczynski, Correlation functions of three heavy operators: The AdS contribution, JHEP 12 (2011) 095 [arXiv:1109.6262] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  60. Y. Kazama and S. Komatsu, On holographic three point functions for GKP strings from integrability, JHEP 01 (2012) 110 [Erratum ibid. 06 (2012) 150] [arXiv:1110.3949] [INSPIRE].

  61. J. Caetano and J. Toledo, χ-systems for correlation functions, JHEP 01 (2019) 050 [arXiv:1208.4548] [INSPIRE].

  62. Y. Kazama and S. Komatsu, Three-point functions in the SU(2) sector at strong coupling, JHEP 03 (2014) 052 [arXiv:1312.3727] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  63. Y. Kazama, S. Komatsu and T. Nishimura, Classical Integrability for Three-point Functions: Cognate Structure at Weak and Strong Couplings, JHEP 10 (2016) 042 [Erratum ibid. 02 (2018) 047] [arXiv:1603.03164] [INSPIRE].

  64. A. Higuchi, Forbidden Mass Range for Spin-2 Field Theory in de Sitter Space-time, Nucl. Phys. B 282 (1987) 397 [INSPIRE].

    Article  ADS  Google Scholar 

  65. D. Lüst and E. Palti, A Note on String Excitations and the Higuchi Bound, Phys. Lett. B 799 (2019) 135067 [arXiv:1907.04161] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  66. H.J. de Vega, A.L. Larsen and N.G. Sanchez, Infinitely many strings in de Sitter space-time: Expanding and oscillating elliptic function solutions, Nucl. Phys. B 427 (1994) 643 [hep-th/9312115] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  67. M. Gary, S.B. Giddings and J. Penedones, Local bulk S-matrix elements and CFT singularities, Phys. Rev. D 80 (2009) 085005 [arXiv:0903.4437] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  68. T. Okuda and J. Penedones, String scattering in flat space and a scaling limit of Yang-Mills correlators, Phys. Rev. D 83 (2011) 086001 [arXiv:1002.2641] [INSPIRE].

    Article  ADS  Google Scholar 

  69. J. Penedones, Writing CFT correlation functions as AdS scattering amplitudes, JHEP 03 (2011) 025 [arXiv:1011.1485] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. S. Raju, New Recursion Relations and a Flat Space Limit for AdS/CFT Correlators, Phys. Rev. D 85 (2012) 126009 [arXiv:1201.6449] [INSPIRE].

    Article  ADS  Google Scholar 

  71. M.S. Costa, V. Goncalves and J. Penedones, Conformal Regge theory, JHEP 12 (2012) 091 [arXiv:1209.4355] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. J. Maldacena, D. Simmons-Duffin and A. Zhiboedov, Looking for a bulk point, JHEP 01 (2017) 013 [arXiv:1509.03612] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. P. Haldar and A. Sinha, Froissart bound for/from CFT Mellin amplitudes, SciPost Phys. 8 (2020) 095 [arXiv:1911.05974] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  74. D. Meltzer, AdS/CFT Unitarity at Higher Loops: High-Energy String Scattering, JHEP 05 (2020) 133 [arXiv:1912.05580] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. S. Komatsu, M.F. Paulos, B.C. Van Rees and X. Zhao, Landau diagrams in AdS and S-matrices from conformal correlators, JHEP 11 (2020) 046 [arXiv:2007.13745] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. D. Chandorkar, S.D. Chowdhury, S. Kundu and S. Minwalla, Bounds on Regge growth of flat space scattering from bounds on chaos, arXiv:2102.03122 [INSPIRE].

  77. N. Arkani-Hamed and J. Maldacena, Cosmological Collider Physics, arXiv:1503.08043 [INSPIRE].

  78. N. Arkani-Hamed, P. Benincasa and A. Postnikov, Cosmological Polytopes and the Wavefunction of the Universe, arXiv:1709.02813 [INSPIRE].

Download references

Author information

Authors and Affiliations

  1. Institute of Physics, University of Tokyo, Komaba, Meguro-ku, Tokyo, 153-8902, Japan

    Mitsuhiro Kato

  2. Department of Physics, Kobe University, Kobe, 657-8501, Japan

    Kanji Nishii, Toshifumi Noumi & Toshiaki Takeuchi

  3. The Oskar Klein Centre for Cosmoparticle Physics & Department of Physics, Stockholm University, AlbaNova, 106 91, Stockholm, Sweden

    Siyi Zhou

Authors
  1. Mitsuhiro Kato
    View author publications

    Search author on:PubMed Google Scholar

  2. Kanji Nishii
    View author publications

    Search author on:PubMed Google Scholar

  3. Toshifumi Noumi
    View author publications

    Search author on:PubMed Google Scholar

  4. Toshiaki Takeuchi
    View author publications

    Search author on:PubMed Google Scholar

  5. Siyi Zhou
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Kanji Nishii.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2102.09746

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kato, M., Nishii, K., Noumi, T. et al. Spiky strings in de Sitter space. J. High Energ. Phys. 2021, 47 (2021). https://doi.org/10.1007/JHEP05(2021)047

Download citation

  • Received: 25 February 2021

  • Accepted: 09 April 2021

  • Published: 06 May 2021

  • Version of record: 06 May 2021

  • DOI: https://doi.org/10.1007/JHEP05(2021)047

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • AdS-CFT Correspondence
  • Long strings
  • Superstring Vacua
  • Cosmology of Theories beyond the SM
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载