+
X
Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Higgs boson pair production and decay at NLO in QCD: the \( b\overline{b}\gamma \gamma \) final state

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 02 April 2024
  • Volume 2024, article number 2, (2024)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
Higgs boson pair production and decay at NLO in QCD: the \( b\overline{b}\gamma \gamma \) final state
Download PDF
  • Hai Tao Li  ORCID: orcid.org/0000-0003-0682-28681,
  • Zong-Guo Si1,
  • Jian Wang  ORCID: orcid.org/0000-0002-7506-30281,2,
  • Xiao Zhang  ORCID: orcid.org/0009-0002-5496-60221 &
  • …
  • Dan Zhao  ORCID: orcid.org/0009-0000-2235-04481 
  • 421 Accesses

  • 2 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

The Higgs boson pair production at the LHC provides a probe to the Higgs boson self-coupling. The higher-order QCD corrections in this process are sizable and must be taken into account in comparison with data. Due to the small cross section, it is necessary to consider at least one of the Higgs bosons decaying to bottom quarks. The QCD corrections to the decay processes would also be important in such cases. We present a full calculation of the total and differential cross sections for the \( b\overline{b}\gamma \gamma \) final state with next-to-leading order (NLO) QCD corrections. After applying typical kinematic cuts in the final state, we find that QCD NLO corrections in the decay decrease the LO result by 19% and reduce the scale uncertainties by a factor of two. The QCD corrections to the invariant mass mjjγγ distribution, the transverse momentum spectra of the leading bottom quark jet and photon are significant and can not be approximated by a constant factor.

Article PDF

Download to read the full article text

Similar content being viewed by others

Higgs boson production in association with massive bottom quarks at NNLO+PS

Article Open access 11 April 2025

NNLO QCD corrections to Higgs boson production at large transverse momentum

Article Open access 13 October 2016

The parton-level structure of Higgs decays to hadrons at N3LO

Article Open access 27 June 2023

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Decay Processes
  • Nuclear Physics
  • Particle Physics
  • Physics Phenomenology
  • Quantum Correlation and Entanglement
  • Quantum Physics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

  2. CMS collaboration, Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

  3. F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector Mesons, Phys. Rev. Lett. 13 (1964) 321 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  4. P.W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12 (1964) 132 [INSPIRE].

    Article  ADS  Google Scholar 

  5. P.W. Higgs, Broken Symmetries and the Masses of Gauge Bosons, Phys. Rev. Lett. 13 (1964) 508 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  6. G.S. Guralnik, C.R. Hagen and T.W.B. Kibble, Global Conservation Laws and Massless Particles, Phys. Rev. Lett. 13 (1964) 585 [INSPIRE].

    Article  ADS  Google Scholar 

  7. CMS collaboration, A measurement of the Higgs boson mass in the diphoton decay channel, Phys. Lett. B 805 (2020) 135425 [arXiv:2002.06398] [INSPIRE].

  8. ATLAS collaboration, Measurement of the Higgs boson mass in the H → ZZ* → 4ℓ decay channel using 139 fb−1 of \( \sqrt{s} \) = 13 TeV pp collisions recorded by the ATLAS detector at the LHC, Phys. Lett. B 843 (2023) 137880 [arXiv:2207.00320] [INSPIRE].

  9. CMS collaboration, Measurement of the Higgs boson width and evidence of its off-shell contributions to ZZ production, Nature Phys. 18 (2022) 1329 [arXiv:2202.06923] [INSPIRE].

  10. ATLAS collaboration, Study of the spin and parity of the Higgs boson in diboson decays with the ATLAS detector, Eur. Phys. J. C 75 (2015) 476 [Erratum ibid. 76 (2016) 152] [arXiv:1506.05669] [INSPIRE].

  11. CMS collaboration, Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV, Phys. Rev. D 92 (2015) 012004 [arXiv:1411.3441] [INSPIRE].

  12. ATLAS collaboration, A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery, Nature 607 (2022) 52 [Erratum ibid. 612 (2022) E24] [arXiv:2207.00092] [INSPIRE].

  13. CMS collaboration, A portrait of the Higgs boson by the CMS experiment ten years after the discovery, Nature 607 (2022) 60 [arXiv:2207.00043] [INSPIRE].

  14. G. Degrassi et al., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].

    Article  ADS  Google Scholar 

  15. M. McCullough, An Indirect Model-Dependent Probe of the Higgs Self-Coupling, Phys. Rev. D 90 (2014) 015001 [Erratum ibid. 92 (2015) 039903] [arXiv:1312.3322] [INSPIRE].

  16. M. Gorbahn and U. Haisch, Indirect probes of the trilinear Higgs coupling: gg → h and h → γγ, JHEP 10 (2016) 094 [arXiv:1607.03773] [INSPIRE].

    Article  ADS  Google Scholar 

  17. G. Degrassi, P.P. Giardino, F. Maltoni and D. Pagani, Probing the Higgs self coupling via single Higgs production at the LHC, JHEP 12 (2016) 080 [arXiv:1607.04251] [INSPIRE].

    Article  ADS  Google Scholar 

  18. W. Bizon, M. Gorbahn, U. Haisch and G. Zanderighi, Constraints on the trilinear Higgs coupling from vector boson fusion and associated Higgs production at the LHC, JHEP 07 (2017) 083 [arXiv:1610.05771] [INSPIRE].

    Article  ADS  Google Scholar 

  19. ATLAS collaboration, Constraints on the Higgs boson self-coupling from single- and double-Higgs production with the ATLAS detector using pp collisions at s=13 TeV, Phys. Lett. B 843 (2023) 137745 [arXiv:2211.01216] [INSPIRE].

  20. J. Gao et al., Probing the Higgs boson trilinear self-coupling through Higgs boson+jet production, Phys. Rev. D 107 (2023) 115017 [arXiv:2302.04160] [INSPIRE].

  21. S. Di Vita et al., A global view on the Higgs self-coupling, JHEP 09 (2017) 069 [arXiv:1704.01953] [INSPIRE].

    Article  Google Scholar 

  22. S. Dawson, S. Dittmaier and M. Spira, Neutral Higgs boson pair production at hadron colliders: QCD corrections, Phys. Rev. D 58 (1998) 115012 [hep-ph/9805244] [INSPIRE].

  23. D. de Florian and J. Mazzitelli, Higgs Boson Pair Production at Next-to-Next-to-Leading Order in QCD, Phys. Rev. Lett. 111 (2013) 201801 [arXiv:1309.6594] [INSPIRE].

  24. D. de Florian et al., Differential Higgs Boson Pair Production at Next-to-Next-to-Leading Order in QCD, JHEP 09 (2016) 151 [arXiv:1606.09519] [INSPIRE].

    Article  ADS  Google Scholar 

  25. L.-B. Chen, H.T. Li, H.-S. Shao and J. Wang, Higgs boson pair production via gluon fusion at N3LO in QCD, Phys. Lett. B 803 (2020) 135292 [arXiv:1909.06808] [INSPIRE].

  26. L.-B. Chen, H.T. Li, H.-S. Shao and J. Wang, The gluon-fusion production of Higgs boson pair: N3LO QCD corrections and top-quark mass effects, JHEP 03 (2020) 072 [arXiv:1912.13001] [INSPIRE].

    Article  ADS  Google Scholar 

  27. S. Borowka et al., Higgs Boson Pair Production in Gluon Fusion at Next-to-Leading Order with Full Top-Quark Mass Dependence, Phys. Rev. Lett. 117 (2016) 012001 [Erratum ibid. 117 (2016) 079901] [arXiv:1604.06447] [INSPIRE].

  28. S. Borowka et al., Full top quark mass dependence in Higgs boson pair production at NLO, JHEP 10 (2016) 107 [arXiv:1608.04798] [INSPIRE].

    Article  ADS  Google Scholar 

  29. J. Baglio et al., Gluon fusion into Higgs pairs at NLO QCD and the top mass scheme, Eur. Phys. J. C 79 (2019) 459 [arXiv:1811.05692] [INSPIRE].

    Article  ADS  Google Scholar 

  30. J. Baglio et al., Higgs-Pair Production via Gluon Fusion at Hadron Colliders: NLO QCD Corrections, JHEP 04 (2020) 181 [arXiv:2003.03227] [INSPIRE].

    Article  ADS  Google Scholar 

  31. M. Grazzini et al., Higgs boson pair production at NNLO with top quark mass effects, JHEP 05 (2018) 059 [arXiv:1803.02463] [INSPIRE].

    Article  ADS  Google Scholar 

  32. M.L. Czakon and M. Niggetiedt, Exact quark-mass dependence of the Higgs-gluon form factor at three loops in QCD, JHEP 05 (2020) 149 [arXiv:2001.03008] [INSPIRE].

    Article  ADS  Google Scholar 

  33. J. Mazzitelli, NNLO study of top-quark mass renormalization scheme uncertainties in Higgs boson production, JHEP 09 (2022) 065 [arXiv:2206.14667] [INSPIRE].

    Article  ADS  Google Scholar 

  34. J. Davies, K. Schönwald and M. Steinhauser, Towards gg → HH at next-to-next-to-leading order: Light-fermionic three-loop corrections, Phys. Lett. B 845 (2023) 138146 [arXiv:2307.04796] [INSPIRE].

  35. S. Borowka et al., Probing the scalar potential via double Higgs boson production at hadron colliders, JHEP 04 (2019) 016 [arXiv:1811.12366] [INSPIRE].

    Article  ADS  Google Scholar 

  36. M. Mühlleitner, J. Schlenk and M. Spira, Top-Yukawa-induced corrections to Higgs pair production, JHEP 10 (2022) 185 [arXiv:2207.02524] [INSPIRE].

    Article  ADS  Google Scholar 

  37. J. Davies et al., Higgs boson contribution to the leading two-loop Yukawa corrections to gg → HH, JHEP 08 (2022) 259 [arXiv:2207.02587] [INSPIRE].

    Article  ADS  Google Scholar 

  38. J. Davies, K. Schönwald, M. Steinhauser and H. Zhang, Next-to-leading order electroweak corrections to gg → HH and gg → gH in the large-mt limit, JHEP 10 (2023) 033 [arXiv:2308.01355] [INSPIRE].

    Article  ADS  Google Scholar 

  39. H.-Y. Bi et al., Electroweak corrections to double Higgs production at the LHC, arXiv:2311.16963 [INSPIRE].

  40. D.Y. Shao, C.S. Li, H.T. Li and J. Wang, Threshold resummation effects in Higgs boson pair production at the LHC, JHEP 07 (2013) 169 [arXiv:1301.1245] [INSPIRE].

    Article  ADS  Google Scholar 

  41. D. de Florian and J. Mazzitelli, Higgs pair production at next-to-next-to-leading logarithmic accuracy at the LHC, JHEP 09 (2015) 053 [arXiv:1505.07122] [INSPIRE].

    Article  Google Scholar 

  42. A. A H and H.-S. Shao, N3LO+N3LL QCD improved Higgs pair cross sections, JHEP 02 (2023) 067 [arXiv:2209.03914] [INSPIRE].

  43. ATLAS collaboration, Measurement prospects of Higgs boson pair production in the \( b\overline{b}\gamma \gamma \) final state with the ATLAS experiment at the HL-LHC, ATL-PHYS-PUB-2022-001, CERN, Geneva (2022).

  44. ATLAS collaboration, Combination of searches for Higgs boson pairs in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Lett. B 800 (2020) 135103 [arXiv:1906.02025] [INSPIRE].

  45. LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector, arXiv:1610.07922 [https://doi.org/10.23731/CYRM-2017-002] [INSPIRE].

  46. HDECAY collaboration, HDECAY: Twenty++ years after, Comput. Phys. Commun. 238 (2019) 214 [arXiv:1801.09506] [INSPIRE].

  47. A. Djouadi, J. Kalinowski and M. Spira, HDECAY: A Program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [INSPIRE].

  48. S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].

    Article  ADS  Google Scholar 

  49. F. Buccioni et al., OpenLoops 2, Eur. Phys. J. C 79 (2019) 866 [arXiv:1907.13071] [INSPIRE].

    Article  ADS  Google Scholar 

  50. F. Buccioni, S. Pozzorini and M. Zoller, On-the-fly reduction of open loops, Eur. Phys. J. C 78 (2018) 70 [arXiv:1710.11452] [INSPIRE].

    Article  ADS  Google Scholar 

  51. A. Denner, S. Dittmaier and L. Hofer, Collier: a fortran-based Complex One-Loop LIbrary in Extended Regularizations, Comput. Phys. Commun. 212 (2017) 220 [arXiv:1604.06792] [INSPIRE].

    Article  ADS  Google Scholar 

  52. A. van Hameren, OneLOop: For the evaluation of one-loop scalar functions, Comput. Phys. Commun. 182 (2011) 2427 [arXiv:1007.4716] [INSPIRE].

    Article  ADS  Google Scholar 

  53. J. Kublbeck, M. Bohm and A. Denner, Feyn Arts: Computer Algebraic Generation of Feynman Graphs and Amplitudes, Comput. Phys. Commun. 60 (1990) 165 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  54. T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].

  55. R. Mertig, M. Bohm and A. Denner, FEYN CALC: Computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  56. V. Shtabovenko, R. Mertig and F. Orellana, New Developments in FeynCalc 9.0, Comput. Phys. Commun. 207 (2016) 432 [arXiv:1601.01167] [INSPIRE].

    Article  ADS  Google Scholar 

  57. V. Shtabovenko, R. Mertig and F. Orellana, FeynCalc 9.3: New features and improvements, Comput. Phys. Commun. 256 (2020) 107478 [arXiv:2001.04407] [INSPIRE].

  58. S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [hep-ph/9605323] [INSPIRE].

  59. T. Gleisberg and F. Krauss, Automating dipole subtraction for QCD NLO calculations, Eur. Phys. J. C 53 (2008) 501 [arXiv:0709.2881] [INSPIRE].

    Article  ADS  Google Scholar 

  60. S. Carrazza, R.K. Ellis and G. Zanderighi, QCDLoop: a comprehensive framework for one-loop scalar integrals, Comput. Phys. Commun. 209 (2016) 134 [arXiv:1605.03181] [INSPIRE].

    Article  ADS  Google Scholar 

  61. A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].

    Article  ADS  Google Scholar 

  62. M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    Article  ADS  Google Scholar 

  63. M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    Article  ADS  Google Scholar 

  64. CMS collaboration, Search for nonresonant Higgs boson pair production in final states with two bottom quarks and two photons in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 03 (2021) 257 [arXiv:2011.12373] [INSPIRE].

  65. E. Braaten and J.P. Leveille, Higgs Boson Decay and the Running Mass, Phys. Rev. D 22 (1980) 715 [INSPIRE].

  66. N. Sakai, Perturbative QCD Corrections to the Hadronic Decay Width of the Higgs Boson, Phys. Rev. D 22 (1980) 2220 [INSPIRE].

    Article  ADS  Google Scholar 

  67. P. Janot, First Order QED and QCD Radiative Corrections to Higgs Decay Into Massive Fermions, Phys. Lett. B 223 (1989) 110 [INSPIRE].

    Article  ADS  Google Scholar 

  68. M. Drees and K.-I. Hikasa, Note on qcd corrections to hadronic Higgs decay, Phys. Lett. B 240 (1990) 455 [Erratum ibid. 262 (1991) 497] [INSPIRE].

  69. J. Fleischer and F. Jegerlehner, Radiative Corrections to Higgs Decays in the Extended Weinberg-Salam Model, Phys. Rev. D 23 (1981) 2001 [INSPIRE].

  70. D.Y. Bardin, B.M. Vilensky and P.K. Khristova, Calculation of the Higgs boson decay width into fermion pairs, Sov. J. Nucl. Phys. 53 (1991) 152 [INSPIRE].

    Google Scholar 

  71. A. Dabelstein and W. Hollik, Electroweak corrections to the fermionic decay width of the standard Higgs boson, Z. Phys. C 53 (1992) 507 [INSPIRE].

    Article  ADS  Google Scholar 

  72. B.A. Kniehl, Radiative corrections for H → \( f\overline{f} \) (γ) in the standard model, Nucl. Phys. B 376 (1992) 3 [INSPIRE].

  73. S.G. Gorishnii, A.L. Kataev, S.A. Larin and L.R. Surguladze, Corrected Three Loop QCD Correction to the Correlator of the Quark Scalar Currents and γtot(H0 → Hadrons), Mod. Phys. Lett. A 5 (1990) 2703 [INSPIRE].

    Article  ADS  Google Scholar 

  74. K.G. Chetyrkin, Correlator of the quark scalar currents and Gamma(tot) (H → hadrons) at O (alpha-s**3) in pQCD, Phys. Lett. B 390 (1997) 309 [hep-ph/9608318] [INSPIRE].

  75. P.A. Baikov, K.G. Chetyrkin and J.H. Kuhn, Scalar correlator at O(alpha(s)**4), Higgs decay into b-quarks and bounds on the light quark masses, Phys. Rev. Lett. 96 (2006) 012003 [hep-ph/0511063] [INSPIRE].

  76. F. Herzog et al., On Higgs decays to hadrons and the R-ratio at N4LO, JHEP 08 (2017) 113 [arXiv:1707.01044] [INSPIRE].

    Article  ADS  Google Scholar 

  77. J. Davies, M. Steinhauser and D. Wellmann, Completing the hadronic Higgs boson decay at order \( {\alpha}_s^4 \), Nucl. Phys. B 920 (2017) 20 [arXiv:1703.02988] [INSPIRE].

  78. X. Chen, P. Jakubčík, M. Marcoli and G. Stagnitto, The parton-level structure of Higgs decays to hadrons at N3LO, JHEP 06 (2023) 185 [arXiv:2304.11180] [INSPIRE].

    ADS  Google Scholar 

  79. C. Anastasiou, F. Herzog and A. Lazopoulos, The fully differential decay rate of a Higgs boson to bottom-quarks at NNLO in QCD, JHEP 03 (2012) 035 [arXiv:1110.2368] [INSPIRE].

    Article  ADS  Google Scholar 

  80. V. Del Duca et al., Higgs boson decay into b-quarks at NNLO accuracy, JHEP 04 (2015) 036 [arXiv:1501.07226] [INSPIRE].

    Article  ADS  Google Scholar 

  81. R. Mondini, M. Schiavi and C. Williams, N3LO predictions for the decay of the Higgs boson to bottom quarks, JHEP 06 (2019) 079 [arXiv:1904.08960] [INSPIRE].

    Article  ADS  Google Scholar 

  82. W. Bernreuther, L. Chen and Z.-G. Si, Differential decay rates of CP-even and CP-odd Higgs bosons to top and bottom quarks at NNLO QCD, JHEP 07 (2018) 159 [arXiv:1805.06658] [INSPIRE].

    Article  ADS  Google Scholar 

  83. A. Behring and W. Bizoń, Higgs decay into massive b-quarks at NNLO QCD in the nested soft-collinear subtraction scheme, JHEP 01 (2020) 189 [arXiv:1911.11524] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  84. G. Somogyi and F. Tramontano, Fully exclusive heavy quark-antiquark pair production from a colourless initial state at NNLO in QCD, JHEP 11 (2020) 142 [arXiv:2007.15015] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  85. K.G. Chetyrkin and A. Kwiatkowski, Second order QCD corrections to scalar and pseudoscalar Higgs decays into massive bottom quarks, Nucl. Phys. B 461 (1996) 3 [hep-ph/9505358] [INSPIRE].

  86. R. Harlander and M. Steinhauser, Higgs decay to top quarks at O(\( {\alpha}_s^2 \)), Phys. Rev. D 56 (1997) 3980 [hep-ph/9704436] [INSPIRE].

  87. J. Wang, Y. Wang and D.-J. Zhang, Analytic decay width of the Higgs boson to massive bottom quarks at next-to-next-to-leading order in QCD, JHEP 03 (2024) 068 [arXiv:2310.20514] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  88. L. Mihaila, B. Schmidt and M. Steinhauser, Γ(H → \( b\overline{b} \)) to order ααs, Phys. Lett. B 751 (2015) 442 [arXiv:1509.02294] [INSPIRE].

  89. Y.L. Hu, C.L. Sun, X.-M. Shen and J. Gao, Hadronic decays of Higgs boson at NNLO matched with parton shower, JHEP 08 (2021) 122 [arXiv:2101.08916] [INSPIRE].

    Article  ADS  Google Scholar 

  90. W. Bizoń, E. Re and G. Zanderighi, NNLOPS description of the H → \( b\overline{b} \) decay with MiNLO, JHEP 06 (2020) 006 [arXiv:1912.09982] [INSPIRE].

  91. S.G. Gorishnii, A.L. Kataev, S.A. Larin and L.R. Surguladze, Scheme dependence of the next to next-to-leading QCD corrections to Gamma(tot) (H0 → hadrons) and the spurious QCD infrared fixed point, Phys. Rev. D 43 (1991) 1633 [INSPIRE].

  92. H.Q. Zheng and D.D. Wu, First order QCD corrections to the decay of the Higgs boson into two photons, Phys. Rev. D 42 (1990) 3760 [INSPIRE].

    Article  ADS  Google Scholar 

  93. A. Djouadi, M. Spira, J.J. van der Bij and P.M. Zerwas, QCD corrections to gamma gamma decays of Higgs particles in the intermediate mass range, Phys. Lett. B 257 (1991) 187 [INSPIRE].

    Article  ADS  Google Scholar 

  94. S. Dawson and R.P. Kauffman, QCD corrections to H → gamma gamma, Phys. Rev. D 47 (1993) 1264 [INSPIRE].

  95. K. Melnikov and O.I. Yakovlev, Higgs → two photon decay: QCD radiative correction, Phys. Lett. B 312 (1993) 179 [hep-ph/9302281] [INSPIRE].

  96. A. Djouadi, M. Spira and P.M. Zerwas, Two photon decay widths of Higgs particles, Phys. Lett. B 311 (1993) 255 [hep-ph/9305335] [INSPIRE].

  97. J. Fleischer, O.V. Tarasov and V.O. Tarasov, Analytical result for the two loop QCD correction to the decay H → 2 gamma, Phys. Lett. B 584 (2004) 294 [hep-ph/0401090] [INSPIRE].

  98. R. Harlander and P. Kant, Higgs production and decay: Analytic results at next-to-leading order QCD, JHEP 12 (2005) 015 [hep-ph/0509189] [INSPIRE].

  99. U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Analytic Results for Virtual QCD Corrections to Higgs Production and Decay, JHEP 01 (2007) 021 [hep-ph/0611266] [INSPIRE].

  100. P. Maierhöfer and P. Marquard, Complete three-loop QCD corrections to the decay H -> γγ, Phys. Lett. B 721 (2013) 131 [arXiv:1212.6233] [INSPIRE].

    Article  ADS  Google Scholar 

  101. J. Davies and F. Herren, Higgs boson decay into photons at four loops, Phys. Rev. D 104 (2021) 053010 [arXiv:2104.12780] [INSPIRE].

  102. M. Niggetiedt, Exact quark-mass dependence of the Higgs-photon form factor at three loops in QCD, JHEP 04 (2021) 196 [arXiv:2009.10556] [INSPIRE].

    Article  ADS  Google Scholar 

  103. M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].

Download references

Acknowledgments

This work was supported in part by the National Science Foundation of China under grant Nos. 12275156, 12321005, 12375076 and the Taishan Scholar Foundation of Shandong province (tsqn201909011).

Author information

Authors and Affiliations

  1. School of Physics, Shandong University, Jinan, 250100, Shandong, China

    Hai Tao Li, Zong-Guo Si, Jian Wang, Xiao Zhang & Dan Zhao

  2. Center for High Energy Physics, Peking University, Beijing, 100871, China

    Jian Wang

Authors
  1. Hai Tao Li
    View author publications

    Search author on:PubMed Google Scholar

  2. Zong-Guo Si
    View author publications

    Search author on:PubMed Google Scholar

  3. Jian Wang
    View author publications

    Search author on:PubMed Google Scholar

  4. Xiao Zhang
    View author publications

    Search author on:PubMed Google Scholar

  5. Dan Zhao
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Jian Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2402.00401

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H.T., Si, ZG., Wang, J. et al. Higgs boson pair production and decay at NLO in QCD: the \( b\overline{b}\gamma \gamma \) final state. J. High Energ. Phys. 2024, 2 (2024). https://doi.org/10.1007/JHEP04(2024)002

Download citation

  • Received: 05 February 2024

  • Accepted: 10 March 2024

  • Published: 02 April 2024

  • Version of record: 02 April 2024

  • DOI: https://doi.org/10.1007/JHEP04(2024)002

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Higgs Production
  • Higher-Order Perturbative Calculations
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载