+
Skip to main content

Enhancing Dense Object Counting in Occlusion with a Dual-Branch Network

  • Conference paper
  • First Online:
Advanced Intelligent Computing Technology and Applications (ICIC 2024)

Abstract

Object counting is a crucial technique that has wide-ranging applications in various domains. A significant challenge in this area is to accurately count dense objects in the presence of occlusions. Previous studies typically used single-branch networks to estimate target quantities, but they fell short in effectively managing occlusion issues within dense clusters. In this study, we introduced the Bilateral Counting Network (BCN), an innovative framework designed to overcome these limitations. BCN incorporates the Dense Region Extraction (DRE) algorithm, an image segmentation method based on clustering that efficiently partitions dense regions of objects by analyzing connected domains. Additionally, the Multi-Lateral Collaborative Counting Network (MCCN), a component of BCN, is a multibranch network that learns to process divided dense regions separately, reducing interference with the generalization features of less occluded areas. Our method performs well on dense small object counting tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chattopadhyay, P., et al.: Counting everyday objects in everyday scenes. In: Presented at the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  2. David, E., et al.: Global wheat head detection 2021: an improved dataset for benchmarking wheat head detection methods. Plant Phenomics 2021, 2021/9846158 (2021). https://doi.org/10.34133/2021/9846158

  3. Ma, Z., et al.: Bayesian loss for crowd count estimation with point supervision. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6141–6150. IEEE, Seoul, Korea (South) (2019). https://doi.org/10.1109/ICCV.2019.00624

  4. Li, X., et al.: Y-BGD: broiler counting based on multi-object tracking. Comput. Electron. Agric. 202, 107347 (2022). https://doi.org/10.1016/j.compag.2022.107347

    Article  Google Scholar 

  5. Zhao, Y., Li, W., Li, Y., Qi, Y., Li, Z., Yue, J.: LFCNet: a lightweight fish counting model based on density map regression. Comput. Electron. Agric. 203, 107496 (2022). https://doi.org/10.1016/j.compag.2022.107496

    Article  Google Scholar 

  6. Li, X., et al.: Automatic Penaeus Monodon Larvae counting via equal keypoint regression with smartphones. Animals 13, 2036 (2023). https://doi.org/10.3390/ani13122036

    Article  Google Scholar 

  7. Ausubel, J.H., et al.: The Great Global Fish Count (GGFC): a potential project of the UN Ocean Decade. Mar. Technol. Soc. J. 55, 116–117 (2021). https://doi.org/10.4031/MTSJ.55.3.4

  8. Chai, Q., Chen, D., Yu, H., Fang, X., Kou, H., Li, H.: Design of monitoring and counting system for bee colony based on ultralow-power consumption MCU and photoelectric sensor. Trans. Chin. Soc. Agric. Eng. 33, 193–198 (2017)

    Google Scholar 

  9. Cesco, S., Sambo, P., Borin, M., Basso, B., Orzes, G., Mazzetto, F.: Smart agriculture and digital twins: Applications and challenges in a vision of sustainability. Eur. J. Agron. 146, 126809 (2023). https://doi.org/10.1016/j.eja.2023.126809

    Article  Google Scholar 

  10. Zhang, S., et al.: Automatic fish population counting by machine vision and a hybrid deep neural network model. Animals 10, 364 (2020). https://doi.org/10.3390/ani10020364

    Article  Google Scholar 

  11. Li, D., et al.: Automatic counting methods in aquaculture: a review. J. World Aquaculture Soc. 52, 269–283 (2021). https://doi.org/10.1111/jwas.12745

    Article  Google Scholar 

  12. Wang, B., et al.: Distribution matching for crowd counting. In: Advances in Neural Information Processing Systems, pp. 1595–1607. Curran Associates, Inc. (2020)

    Google Scholar 

  13. Wan, J., et al.: A generalized loss function for crowd counting and localization. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1974–1983. IEEE, Nashville, TN, USA (2021). https://doi.org/10.1109/CVPR46437.2021.00201

  14. Lin, H., Ma, Z., Ji, R., Wang, Y., Hong, X.: Boosting crowd counting via multifaceted attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19628–19637 (2022)

    Google Scholar 

  15. Global Wheat Detection. https://kaggle.com/competitions/global-wheat-detection. Accessed 6 Apr 2024

  16. Zhang, D.-Y., et al.: Enhancing wheat Fusarium head blight detection using rotation Yolo wheat detection network and simple spatial attention network. Comput. Electron. Agric. 211, 107968 (2023). https://doi.org/10.1016/j.compag.2023.107968

    Article  Google Scholar 

  17. Liu, Z., Li, Y., Shuang, F., Huang, Z., Wang, R.: EMB-YOLO: dataset, method and benchmark for electric meter box defect detection. J. King Saud Univ. – Comput. Inf. Sci. 36, 101936 (2024). https://doi.org/10.1016/j.jksuci.2024.101936

  18. Li, X., et al.: PPCL-RSE: point prediction for counting and localization of Litopenaeus Vannamei fry with region-based super-resolution enhancement. Smart Agric. Technol. 100440 (2024). https://doi.org/10.1016/j.atech.2024.100440

  19. Xu, C., et al.: AutoScale: learning to scale for crowd counting. Int. J. Comput. Vis. 130, 405–434 (2022). https://doi.org/10.1007/s11263-021-01542-z

    Article  Google Scholar 

  20. Liang, D., Xu, W., Bai, X.: An end-to-end transformer model for crowd localization. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022, pp. 38–54. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19769-7_3

  21. Liang, D., et al.: Focal inverse distance transform maps for crowd localization. IEEE Trans. Multimedia 1–13 (2022). https://doi.org/10.1109/TMM.2022.3203870

  22. Tian, Y., Chu, X., Wang, H.: CCTrans: simplifying and improving crowd counting with transformer (2021). http://arxiv.org/abs/2109.14483

  23. Liang, D., et al.: TransCrowd: weakly-supervised crowd counting with transformers. Sci. China Inf. Sci. 65, 160104 (2022). https://doi.org/10.1007/s11432-021-3445-y

    Article  Google Scholar 

  24. Jiang, X., et al.: Attention scaling for crowd counting. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4705–4714. IEEE, Seattle, WA, USA (2020). https://doi.org/10.1109/CVPR42600.2020.00476

  25. Kantorovich, L.V.: On the translocation of masses. J. Math. Sci. 133, 1381–1382 (2006). https://doi.org/10.1007/s10958-006-0049-2

    Article  MathSciNet  Google Scholar 

  26. Flamary, R., et al.: POT: Python Optimal Transport. Le Centre pour la Communication Scientifique Directe - HAL - ENS-LYON (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ximing Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Z., Wang, M., Zhuang, Y., Guo, Y., Li, X. (2024). Enhancing Dense Object Counting in Occlusion with a Dual-Branch Network. In: Huang, DS., Pan, Y., Zhang, Q. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2024. Lecture Notes in Computer Science, vol 14872. Springer, Singapore. https://doi.org/10.1007/978-981-97-5612-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5612-4_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5611-7

  • Online ISBN: 978-981-97-5612-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Keywords

Publish with us

Policies and ethics

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载