+
Skip to main content

Adaptive Path Planning Method for Robot-Assisted Craniotomy

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2024)

Abstract

Craniotomy is a prerequisite for many neuro-surgeries such as intracranial tumor resection and decompression of cerebral hemorrhage. However, existing manual craniotomy methods are time-consuming and labor-intensive, presenting low efficiency and security. Robots have shown great potential for safe, precise and efficient craniotomy by introducing accurate positioning and stable motion control. We proposed a method that automatically computes operation path for robotic craniotomy and adapt to the irregular geometric change of the skull, based on the surgeon’s surgical plan from computed tomography (CT) images. The drilling path is generated from intersection between the skull entity and surgeon-input drilling intents. A virtual-center (VC) method is developed to adaptively compute an initial milling path through the generated drilling path, which is then improved under both clinical and skull-cutting constrains. The results show that our method works effectively to generate the operation path adapting to the unstructured skull. This research highlights the potential for optimizing current craniotomy procedures by employing the robot, laying the foundation for future autonomous robot-based craniotomy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Johns, U.S.: Hopkins medicine, craniotomy (2023). https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/craniotomy

  2. Bian, G.B., Wei, B.T., Li, Z., et al.: Robotic automatic drilling for craniotomy: algorithms and in vitro animal experiments. IEEE/ASME Trans. Mechatron. (2023)

    Google Scholar 

  3. Caird, J.D., Choudhari, K.A.: Plunging’during burr hole craniostomy: a persistent problem amongst neurosurgeons in Britain and Ireland. Br. J. Neurosurg. 17(6), 509–512 (2003)

    Article  MATH  Google Scholar 

  4. Chiang, H.Y., Kamath, A.S., Pottinger, J.M., et al.: Risk factors and outcomes associated with surgical site infections after craniotomy or craniectomy. J. Neurosurg. 120(2), 509–521 (2014)

    Article  Google Scholar 

  5. Kwoh, Y.S., Hou, J., Jonckheere, E.A., et al.: A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans. Biomed. Eng. 35(2), 153–160 (1988)

    Article  MATH  Google Scholar 

  6. Xu, C., Lin, L., Aung, Z.M., et al.: A preliminary study on animal experiments of robot-assisted craniotomy. World Neurosurg. 149, e748–e757 (2021)

    Article  MATH  Google Scholar 

  7. Duan, X., Tian, H., Li, C., et al.: Virtual-fixture based drilling control for robot-assisted craniotomy: learning from demonstration. IEEE Robot. Autom. Lett. 6(2), 2327–2334 (2021)

    Article  MATH  Google Scholar 

  8. Bian, G.B., Qian, C., Li, Z., et al.: Automatic robotic cranium-milling: a motion control study of in vitro animal experiments. IEEE Trans. Autom. Sci. Eng. (2024)

    Google Scholar 

  9. Pak, N., Siegle, J.H., Kinney, J.P., et al.: Closed-loop, ultraprecise, automated craniotomies. J. Neurophysiol. 113(10), 3943–3953 (2015)

    Article  Google Scholar 

  10. Grygoryev, K., Komolibus, K., Gunther, J., et al.: Cranial perforation using an optically-enhanced surgical drill. IEEE Trans. Biomed. Eng. 67(12), 3474–3482 (2020)

    Article  MATH  Google Scholar 

  11. Zakeri, V., Hodgson, A.J.: Automatic identification of hard and soft bone tissues by analyzing drilling sounds. IEEE/ACM Trans. Audio Speech Lang. Process. 27(2), 404–414 (2018)

    Article  MATH  Google Scholar 

  12. Liang, L., Cool, D., Kakani, N., et al.: Automatic radiofrequency ablation planning for liver tumors with multiple constraints based on set covering. IEEE Trans. Med. Imaging 39(5), 1459–1471 (2019)

    Article  MATH  Google Scholar 

  13. Zhang, Q., Li, M., Qi, X., et al.: 3D path planning for anterior spinal surgery based on CT images and reinforcement learning. In: IEEE International Conference on Cyborg and Bionic Systems (CBS), pp. 317–321. IEEE (2018)

    Google Scholar 

  14. Qi, X., Meng, J., Li, M., et al.: An automatic path planning method of pedicle screw placement based on preoperative CT images. IEEE Trans. Med. Robot. Bionics 4(2), 403–413 (2022)

    Article  MATH  Google Scholar 

  15. Henrich, D.: Robotergestütztes fräsen an der lateralen schädelbasis: kraft-basierte lokale navigation bei der implantatbettanlage (2002)

    Google Scholar 

  16. Stolka, P.J., Henrich, D., Tretbar, S.H., et al.: First 3D ultrasound scanning, planning, and execution of CT-free milling interventions with a surgical robot. In: 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5605–5610. IEEE (2008)

    Google Scholar 

  17. Waringo, M., Henrich, D.: 3-Dimensionale schichtweise Bahnplanung fur any-time-frasanwendungen. Vdi Ber. 1841, 781–788 (2004)

    Google Scholar 

  18. Waringo, M., Henrich, D.: Smoothing of piecewise linear paths. Int. J. Adv. Rob. Syst. 5(3), 24 (2008)

    Article  MATH  Google Scholar 

  19. Petermann, J., Kober, R., Heinze, R., et al.: Computer-assisted planning and robot-assisted surgery in anterior cruciate ligament reconstruction. Oper. Tech. Orthop. 10(1), 50–55 (2000)

    Article  MATH  Google Scholar 

  20. Fuchs, K.H.: Minimally invasive surgery. Endoscopy 34(02), 154−159 (2002)

    Google Scholar 

  21. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  MATH  Google Scholar 

  22. Kikinis, R., Pieper, S.D., Vosburgh, K.G.: 3D slicer: a platform for subject-specific image analysis, visualization, and clinical support. Intraoperative imaging and image-guided therapy, pp. 277–289. New York, NY: Springer New York (2013)

    Google Scholar 

  23. Drouin, S., Collins, D.L.: PRISM: an open source framework for the interactive design of GPU volume rendering shaders. PLoS ONE 13(3), e0193636 (2018)

    Article  Google Scholar 

  24. Ran, L., Wanggen, W., Yiyuan, Z., et al.: Normal estimation algorithm for point cloud using KD-Tree (2013)

    Google Scholar 

  25. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN′95-International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)

    Google Scholar 

  26. Kurasov, D.A.: Computer-aided manufacturing: industry 4.0. In: IOP Conference Series: Materials Science and Engineering, vol. 1047, no. 1, p. 012153. IOP Publishing (2021)

    Google Scholar 

  27. Yang, G.Z., Cambias, J., Cleary, K., et al.: Dancewu. Sci. Robot. 2(4), eaam8638 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Beijing Natural Science Foundation-Haidian Original Innovation Joint Fund Project under Grant L212048, and the State Key Laboratory of Tribology in Advanced Equipment of China under Grant SKLT2022B08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Z., Hong, S., Ma, X., Wu, D. (2025). Adaptive Path Planning Method for Robot-Assisted Craniotomy. In: Lan, X., Mei, X., Jiang, C., Zhao, F., Tian, Z. (eds) Intelligent Robotics and Applications. ICIRA 2024. Lecture Notes in Computer Science(), vol 15205. Springer, Singapore. https://doi.org/10.1007/978-981-96-0777-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0777-8_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0776-1

  • Online ISBN: 978-981-96-0777-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Keywords

Publish with us

Policies and ethics

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载