+
Skip to main content

YOLO-Pdd: A Novel Multi-scale PCB Defect Detection Method Using Deep Representations with Sequential Images

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15293))

Included in the following conference series:

  • 278 Accesses

  • 6 Citations

Abstract

With the rapid growth of the PCB manufacturing industry, there is an increasing demand for computer vision inspection to detect defects during production. Improving the accuracy and generalization of PCB defect detection models remains a significant challenge. This paper proposes a high-precision, robust, and real-time end-to-end method for PCB defect detection based on deep Convolutional Neural Networks (CNN). Traditional methods often suffer from low accuracy and limited applicability. We propose a novel approach combining YOLOv5 and multiscale modules for hierarchical residual-like connections. In PCB defect detection, noise can confuse the background and small targets. The YOLOv5 model provides a strong foundation with its real-time processing and accurate object detection capabilities. The multi-scale module extends traditional approaches by incorporating hierarchical residual-like connections within a single block, enabling multiscale feature extraction. This plug-and-play module significantly enhances performance by extracting features at multiple scales and levels, which are useful for identifying defects of varying sizes and complexities. Our multi-scale architecture integrates feature extraction, defect localization, and classification into a unified network. Experiments on a large-scale PCB dataset demonstrate significant improvements in precision, recall, and F1-score compared to existing methods. This work advances computer vision inspection for PCB defect detection, providing a reliable solution for high-precision, robust, real-time, and domain-adaptive defect detection in the PCB manufacturing industry.

B. Liu, D. Chen and X. Qi—These authors made equal contributions to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhou, Y., Yuan, M., Zhang, J., Ding, G., Qin, S.: Review of vision-based defect detection research and its perspectives for printed circuit board. J. Manuf. Syst. 70, 557–578 (2023). https://doi.org/10.1016/j.jmsy.2023.08.019

    Article  Google Scholar 

  2. Chen, I.-C., Hwang, R.-C., Huang, H.-C.: PCB defect detection based on deep learning algorithm. Processes 11(3), 775 (2023). https://doi.org/10.3390/pr11030775

    Article  Google Scholar 

  3. Tsai, C., Chiu, C., Chen, J.: A case-based reasoning system for PCB defect prediction. Expert Syst. Appl. 28(4), 813–822 (2005). https://doi.org/10.1016/j.eswa.2004.12.036

    Article  Google Scholar 

  4. Ling, Q., Isa, N.A.: Printed circuit board defect detection methods based on image processing, machine learning and deep learning: a survey. IEEE Access 11, 15921–15944 (2023). https://doi.org/10.1109/access.2023.3245093

  5. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017). https://doi.org/10.1109/tpami.2016.2577031

    Article  Google Scholar 

  6. Virasova, A.Y., Klimov, D.I., Khromov, O.E., Gubaidullin, I.R., Oreshko, V.V.: Rich feature hierarchies for accurate object detection and semantic segmentation. Radio Eng. 115–126 (2021). https://doi.org/10.18127/j00338486-202109-11

  7. Girshick, R.: Fast R-CNN. In: 2015 IEEE International Conference on Computer Vision (ICCV) (2015). https://doi.org/10.1109/iccv.2015.169

  8. Zhang, K., Shen, H.: Solder joint defect detection in the connectors using improved faster-RCNN algorithm. Appl. Sci. 11(2), 576 (2021). https://doi.org/10.3390/app11020576

    Article  MathSciNet  Google Scholar 

  9. Weng, W., Wei, M., Ren, J., Shen, F.: Enhancing aerial object detection with selective frequency interaction network. IEEE Transactions on Artificial Intelligence (2024)

    Google Scholar 

  10. Li, H., Zhang, R., Pan, Y., Ren, J., Shen, F.: LR-FPN: Enhancing Remote Sensing Object Detection with Location Refined Feature Pyramid Network. arXiv preprint arXiv:2404.01614 (2024)

  11. Qiao, C., et al.: A novel multi-frequency coordinated module for SAR ship detection. In 2022 IEEE 34th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 804–811. IEEE (2022)

    Google Scholar 

  12. Ding, R., Dai, L., Li, G., Liu, H.: TDD-Net: a tiny defect detection network for printed circuit boards. CAAI Trans. Intell. Technol. 4(2), 110–116 (2019)

    Article  Google Scholar 

  13. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings IEEE Conference on Computer Vison Pattern Recognition (CVPR), pp. 6517–6525 (2017)

    Google Scholar 

  14. Lin, T.-Y., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 936–944 (2017)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  16. Adibhatla, V.A., Chih, H.-C., Hsu, C.-C., Cheng, J., Abbod, M.F., Shieh, J.-S.: Applying deep learning to defect detection in printed circuit boards via a newest model of you-only-look-once. Math. Biosci. Eng. 18(4), 4411–4428 (2021). https://doi.org/10.3934/mbe.2021223

    Article  Google Scholar 

  17. Ultralytics: YOLOV5. https://github.com/ultralytics/yoloV5. Accessed 23 Dec 2022

  18. Shen, F., Shu, X., Du, X., Tang, J.: Pedestrian-specific bipartite-aware similarity learning for text-based person retrieval. In: Proceedings of the 31st ACM International Conference on Multimedia, pp. 8922–8931 (2023)

    Google Scholar 

  19. Anoop, K.P., Sarath, N., Kuma, S.: A review of PCB defect detection using image processing. Int. J. Eng. Innov. Technol. 4, 188–192 (2015)

    Google Scholar 

  20. Suhasini, A., Sonal, D.K., Prathiksha, B.G., Meghashree, B.S., Phaneendra, H.D.: PCB defect detection using image subtraction algorithm. Int. J. Comput. Sci. Trends Technol. 3, 8887 (2015)

    Google Scholar 

  21. Li, Z., Yang, Q.: System design for PCB defects detection based on Aoi Technology. In: 2011 4th International Congress on Image and Signal Processing (2011). https://doi.org/10.1109/cisp.2011.6100553

  22. Shen, F., Du, X., Zhang, L., Shu, X., Tang, J.: Triplet Contrastive Representation Learning for Unsupervised Vehicle Re-identification. arXiv preprint arXiv:2301.09498 (2023)

  23. Zhang, Z., Wang, X., Liu, S., Sun, L., Chen, L., Guo, Y.: An automatic recognition method for PCB visual defects. In: Proceedings of the 2018 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC), pp. 138–142 (2018). https://doi.org/10.1109/SDPC.2018.8664974

  24. Zhang, H., Jiang, L., Li, C.: CS-ResNet: cost-sensitive residual convolutional neural network for PCB cosmetic defect detection. Expert Syst. Appl. 185, 115673 (2021). https://doi.org/10.1016/j.eswa.2021.115673

  25. Jiawang, H., et al.: Fast plug-in capacitors polarity detection with morphology and SVM fusion method in automatic optical inspection system. SIViP 17(5), 2555–2563 (2023). https://doi.org/10.1007/s11760-022-02472-0

    Article  Google Scholar 

  26. Wu, X., Ge, Y., Zhang, Q., Zhang, D.: PCB defect detection using deep learning methods. In: Proceedings of the 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD), pp. 873–876 (2021). https://doi.org/10.1109/CSCWD49262.2021.9437846

  27. Ran, G., Lei, X., Li, D., Guo, Z.: Research on PCB defect detection using deep convolutional neural network. In: 2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE), pp. 1310–1314 (2020). https://doi.org/10.1109/ICMCCE51767.2020.00287

  28. Volkau, I., Mujeeb, A., Wenting, D., Marius, E., Alexei, S.: Detection defect in printed circuit boards using unsupervised feature extraction upon transfer learning. In: 2019 International Conference on Cyberworlds (CW) (2019). https://doi.org/10.1109/cw.2019.00025

  29. Alom, M., et al.: A state-of-the-art survey on deep learning theory and architectures. Electronics 8(3) (2019). https://doi.org/10.3390/electronics8030292

  30. Yu-Ting, L., Kuo, P., Jiun-In, G.: Automatic Industry PCB board DIP process defect detection with deep ensemble method. In: 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE), pp. 453–459 (2020)

    Google Scholar 

  31. Shen, F., Zhu, J., Zhu, X., Xie, Y., Huang, J.: Exploring spatial significance via hybrid pyramidal graph network for vehicle re-identification. IEEE Trans. Intell. Transp. Syst. 23(7), 8793–8804 (2021)

    Article  Google Scholar 

  32. Lv, N., Xiao, J., Qiao, Y.: Object detection algorithm for surface defects based on a novel YOLOv3 model. Processes 10(4), 701 (2022). https://doi.org/10.3390/pr10040701

    Article  Google Scholar 

  33. Tang, S., He, F., Huang, X., Yang, J.: Online PCB defect detector on a new PCB defect dataset. arXiv.org. Accessed 5 Jun 2024

  34. Huang, W., Wei, P., Zhang, M., Liu, H.: HRIPCB: a challenging dataset for PCB defects detection and classification. J. Eng. 2020(13), 303–309 (2020). https://doi.org/10.1049/joe.2019.1183

  35. Wan, Y., Gao, L., Li, X., Gao, Y.: Semi-supervised defect detection method with data-expanding strategy for PCB Quality Inspection. Sensors 22(20), 7971 (2022). https://doi.org/10.3390/s22207971

    Article  Google Scholar 

  36. Tan, C., Xu, X., Shen, F.: A survey of Zero shot detection: methods and applications. Cognitive Robot. 1, 159–167 (2021). https://doi.org/10.1016/j.cogr.2021.08.001

  37. Ren, R., Hung, T., Tan, K.C.: A generic deep-learning-based approach for Automated Surface Inspection. IEEE Trans. Cybern. 48(3), 929–940 (2018). https://doi.org/10.1109/tcyb.2017.2668395

    Article  Google Scholar 

  38. Zhang, H., et al.: StackGAN: text to photo-realistic image synthesis with stacked generative adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV) (2017). https://doi.org/10.1109/iccv.2017.629

  39. Li, J., Gu, J., Huang, Z., Wen, J.: Application research of improved YOLO V3 algorithm in PCB electronic component detection. Appl. Sci. 9(18), 3750 (2019). https://doi.org/10.3390/app9183750

    Article  Google Scholar 

  40. P. S., M., R. S., N.: PCB defect detection, classification and localization using mathematical morphology and image processing tools. Int. J. Comput. Appl. 87(9), 40–45 (2014). https://doi.org/10.5120/15240-3782

  41. Gao, S., et al.: Res2Net: a new multi-scale backbone architecture. IEEE Trans. Pattern Anal. Mach. Intell. 43(2), 652–662 (2021)

    Google Scholar 

  42. Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y.M.: YOLOv4: Optimal Speed and accuracy of object detection. arXiv.org, https://arxiv.org/abs/2004.10934. Accessed 10 Jun 2024

  43. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  44. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified real-time object detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788 (2016)

    Google Scholar 

  45. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., et al.: SSD: single shot multibox detector. In: Proceedings of European Conference on Computer Vision, pp. 21–37 (2016)

    Google Scholar 

  46. Dai, J., et al.: R-FCN: object detection via region-based fully convolutional networks. Adv. Neural Inf. Process. Syst. 29 (2016)

    Google Scholar 

  47. Lin, T.-Y., et al.: Focal loss for dense object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  48. Fu, C.-Y., et al.: DSSD: Deconvolutional single shot detector. arXiv preprint arXiv:1701.06659 (2017)

  49. He, K., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  50. Ioffe, S.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Qi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, B., Chen, D., Qi, X. (2025). YOLO-Pdd: A Novel Multi-scale PCB Defect Detection Method Using Deep Representations with Sequential Images. In: Mahmud, M., Doborjeh, M., Wong, K., Leung, A.C.S., Doborjeh, Z., Tanveer, M. (eds) Neural Information Processing. ICONIP 2024. Lecture Notes in Computer Science, vol 15293. Springer, Singapore. https://doi.org/10.1007/978-981-96-6596-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-6596-9_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-6598-3

  • Online ISBN: 978-981-96-6596-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Keywords

Publish with us

Policies and ethics

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载