+
X
Skip to main content

Advertisement

Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Digital Services and Information Intelligence
  3. Conference paper

Quantum-Behaved Particle Swarm Optimization Based on Diversity-Controlled

  • Conference paper
  • pp 132–143
  • Cite this conference paper
Digital Services and Information Intelligence (I3E 2014)
Quantum-Behaved Particle Swarm Optimization Based on Diversity-Controlled
  • HaiXia Long3,
  • Haiyan Fu3 &
  • Chun Shi3 

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 445))

Included in the following conference series:

  • Conference on e-Business, e-Services and e-Society
  • 2285 Accesses

  • 2 Citations

Abstract

Quantum-behaved particle swarm optimization (QPSO) algorithm is a global convergence guaranteed algorithms, which outperforms original PSO in search ability but has fewer parameters to control. But QPSO algorithm is to be easily trapped into local optima as a result of the rapid decline in diversity. So this paper describes diversity-controlled into QPSO (QPSO-DC) to enhance the diversity of particle swarm, and then improve the search ability of QPSO. The experiment results on benchmark functions show that QPSO-DC has stronger global search ability than QPSO and standard PSO.

Download to read the full chapter text

Chapter PDF

Similar content being viewed by others

Parallel Quantum-Behaved Particle Swarm Optimization Algorithm with Neighborhood Search

Chapter © 2016

Clustering Quantum-Behaved Particle Swarm Optimization Algorithm for Solving Dynamic Optimization Problems

Chapter © 2015

Quantum-behaved particle swarm optimization with generalized space transformation search

Article 17 March 2020

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Continuous Optimization
  • Diversity-oriented Synthesis
  • Discrete Optimization
  • Optimization
  • Quantum Computing
  • Stochastic Learning and Adaptive Control

References

  1. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc.IEEE Int. Conf. Neural Networks, pp. 1942–1948 (1995); Van den Bergh, F.: An Analysis of Particle Swarm Optimizers. University of Pretoria, South Africa (2001)

    Google Scholar 

  2. Clerc, M.: Discrete particle swarm optimization illustrated by the traveling salesman problem. In: Onwubolu, G.C., Babu, B.V. (eds.) New Optimization Techniques in Engineering. STUDFUZZ, vol. 141, pp. 219–239. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Clerc, M.: Particle swarm optimization. In: ISTE (2006)

    Google Scholar 

  4. Zhang, W., Liu, Y., Clerc, M.: An adaptive PSO algorithm for reactive power optimization, In: Sixth International Conference on Advances in Power Control, Operation and Management, Hong Kong (2003)

    Google Scholar 

  5. Eberhart, R.C., Shi, Y.: Comparing inertia weights and constriction factors in particle swarm optimization. In: IEEE International Conference on Evolutionary Computation, pp. 81–86 (2001)

    Google Scholar 

  6. He, S., Wu, Q.H., Wen, J.Y., Saunders, J.R., Paton, R.C.: A particle swarm optimizer with passive congregation. Biosystems 78, 135–147 (2004)

    Article  Google Scholar 

  7. Hu, X., Eberhart, R.C.: Tracking dynamic systems with PSO: where’s the cheese? In: Proceedings of the workshop on Particle Swarm Optimization, Indianapolis, USA (2001)

    Google Scholar 

  8. Parsopoulos, K.E., Vrahatis, M.N.: Particle swarm optimizer in noisy and continuously changing environments. Artificial Intelligence and Soft Computing, pp. 289–294 (2001)

    Google Scholar 

  9. Parsopoulos, K.E., Vrahatis, M.N.: On the computation of all global minimizers thorough particle swarm optimization. IEEE Transactions on Evolutionary Computation 8, 211–224 (2004)

    Article  Google Scholar 

  10. LoZvbjerg, M., Krink, T.: Extending particle swarms with self-organized criticality. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1588–1593 (2002)

    Google Scholar 

  11. Blackwell, T., Bentley, P.J.: Don’t push me! Collision-avoiding swarms. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1691–1696 (2002)

    Google Scholar 

  12. Robinson, J., Sinton, S., Rahmat-Samii, Y.: Particle swarm, genetic algorithm, and their hybrids: optimization of a profiled corrugated horn antenna. In: IEEE Swarm Intelligence Symposium, pp. 314–317 (2002)

    Google Scholar 

  13. Hendtlass, T.: A combined swarm differential evolution algorithm for optimization problems. In: Monostori, L., Váncza, J., Ali, M. (eds.) IEA/AIE 2001. LNCS (LNAI), vol. 2070, pp. 11–18. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intelligence 1, 33–57 (2007)

    Article  Google Scholar 

  15. Sun, J., Xu, W.B., Feng, B.: Particle swarm optimization with particles having quantum behavior. In: Proc. Congress on Evolutionary Computation, pp. 325–331 (2004)

    Google Scholar 

  16. Sun, J., Xu, W.B., Feng, B.: A global search strategy of quantum behaved particle swarm optimization. In: Proc. IEEE Conference on Cybernetics and Intelligent Systems, pp. 111–116 (2004)

    Google Scholar 

  17. Sun, J., Xu, W.B., Fang, W.: Quantum-behaved particle swarm optimization with a hybrid probability distribution. In: The Proceeding of 9th Pacific Rim International Conference on Artificial Intelligence (2006)

    Google Scholar 

  18. Liu, J., Sun, J., Xu, W.: Quantum-Behaved Particle Swarm Optimization with Immune Operator. In: Esposito, F., Raś, Z.W., Malerba, D., Semeraro, G. (eds.) ISMIS 2006. LNCS (LNAI), vol. 4203, pp. 77–83. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Coelho, L.S.: Novel Gaussian quantum-behaved particle swarm optimizer applied to electromagnetic design. Science, Measurement & Technology 1, 290–294 (2007)

    Article  MathSciNet  Google Scholar 

  20. Liu, J., Sun, J., Xu, W.B.: Quantum-behaved particle swarm optimization with immune memory and vaccination. In: Proc. IEEE International Conference on Granular Computing, USA, pp. 453–456 (2006)

    Google Scholar 

  21. Angeline, P.J.: Using Selection to Improve Particle Swarm Optimization. In: Proc. 1998 IEEE International Conference on Evolutionary Computation, Piscataway, NJ, pp. 84–89 (1998)

    Google Scholar 

  22. Shi, Y., Eberhart, R.C.: A Modified Particle Swarm. In: Proc.1998 IEEE International Conference on Evolutionary Computation, Piscataway, NJ, pp. 69–73 (1998)

    Google Scholar 

  23. Clerc, M., Kennedy, J.: The Particle Swarm: Explosion, Stability, and Convergence in a Multi-dimensional Complex Space. IEEE Transactions on Evolutionary Computation 6, 58–73 (2002)

    Article  Google Scholar 

  24. Shi, Y., Eberhart, R.: Empirical Study of Particle Swarm Optimization. In: Proc. 1999 Congress on Evolutionary Computation, Piscataway, NJ, pp. 1945–1950 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. School of Information Science Technology, Hainan Normal University, Haikou, 571158, Hainan, China

    HaiXia Long, Haiyan Fu & Chun Shi

Authors
  1. HaiXia Long
    View author publications

    Search author on:PubMed Google Scholar

  2. Haiyan Fu
    View author publications

    Search author on:PubMed Google Scholar

  3. Chun Shi
    View author publications

    Search author on:PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Turku School of Economics, University of Turku, Rehtorinpellonkatu 3, 20520, Turku, Finland

    Hongxiu Li  & Matti Mäntymäki  & 

  2. School of Information Science and Technology, Hainan Normal University, No. 99 Longkun South Road, 571158, Haikou, China

    Xianfeng Zhang

Rights and permissions

Reprints and permissions

Copyright information

© 2014 IFIP International Federation for Information Processing

About this paper

Cite this paper

Long, H., Fu, H., Shi, C. (2014). Quantum-Behaved Particle Swarm Optimization Based on Diversity-Controlled. In: Li, H., Mäntymäki, M., Zhang, X. (eds) Digital Services and Information Intelligence. I3E 2014. IFIP Advances in Information and Communication Technology, vol 445. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45526-5_13

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-662-45526-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45525-8

  • Online ISBN: 978-3-662-45526-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • global convergence
  • quantum-behaved particle swarm optimization
  • diversity-controlled
  • benchmark function

Publish with us

Policies and ethics

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

23.94.208.52

Not affiliated

Springer Nature

© 2025 Springer Nature

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载