+
Skip to main content

Mining Association Rules from Semantic Web Data

  • Conference paper
Trends in Applied Intelligent Systems (IEA/AIE 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6097))

  • 1461 Accesses

  • 19 Citations

Abstract

The amount of ontologies and semantic annotations available on the Web is constantly increasing. This new type of complex and heterogeneous graph-structured data raises new challenges for the data mining community. In this paper, we present a novel method for mining association rules from semantic instance data repositories expressed in RDF/S and OWL. We take advantage of the schema-level (i.e. Tbox) knowledge encoded in the ontology to derive just the appropriate transactions which will later feed traditional association rules algorithms. This process is guided by the analyst requirements, expressed in the form of a query pattern. Initial experiments performed on real world semantic data enjoy promising results and show the usefulness of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Buitelaar, P., Cimiano, P., Magnini, B. (eds.): Ontology Learning from Text: Methods, Evaluation and Applications. Frontiers in Artificial Intelligence and Applications, vol. 123. IOS Press, Amsterdam (2005)

    Google Scholar 

  2. Muggleton, S., Raedt, L.D.: Inductive logic programming: Theory and methods. J. Log. Program 19/20, 629–679 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Lisi, F.A., Esposito, F.: Mining the Semantic Web: A logic-based methodology. In: Hacid, M.-S., Murray, N.V., Raś, Z.W., Tsumoto, S. (eds.) ISMIS 2005. LNCS (LNAI), vol. 3488, pp. 102–111. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Hartmann, J., Sure, Y.: A knowledge discovery workbench for the Semantic Web. In: Workshop on Mining for and from the Semantic Web at the ACM SIGKDD (August 2004)

    Google Scholar 

  5. Bloehdorn, S., Sure, Y.: Kernel methods for mining instance data in ontologies. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 58–71. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Dánger, R., Ruiz-Shulcloper, J., Llavori, R.B.: Objectminer: A new approach for mining complex objects. In: ICEIS (2), pp. 42–47 (2004)

    Google Scholar 

  7. Rodríguez-González, A.Y., Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Ruiz-Shulcloper, J.: Mining frequent similar patterns on mixed data. In: Ruiz-Shulcloper, J., Kropatsch, W.G. (eds.) CIARP 2008. LNCS, vol. 5197, pp. 136–144. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Chi, Y., Muntz, R.R., Nijssen, S., Kok, J.N.: Frequent subtree mining - an overview. Fundam. Inform. 66(1-2), 161–198 (2005)

    MathSciNet  MATH  Google Scholar 

  9. Kuramochi, M., Karypis, G.: Frequent subgraph discovery. In: Cercone, N., Lin, T.Y., Wu, X. (eds.) ICDM, pp. 313–320. IEEE Computer Society, Los Alamitos (2001)

    Google Scholar 

  10. Kiefer, C., Bernstein, A., Locher, A.: Adding data mining support to SPARQL via statistical relational learning methods. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 478–492. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Kochut, K., Janik, M.: SPARQLeR: Extended SPARQL for semantic association discovery. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 145–159. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of items in large databases. In: SIGMOD Conference, pp. 207–216. ACM Press, New York (1993)

    Google Scholar 

  13. Nebot, V., Llavori, R.B.: Efficient retrieval of ontology fragments using an interval labeling scheme. Inf. Sci. 179(24), 4151–4173 (2009)

    Article  Google Scholar 

  14. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: VLDB, pp. 487–499. Morgan Kaufmann, San Francisco (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nebot, V., Berlanga, R. (2010). Mining Association Rules from Semantic Web Data. In: García-Pedrajas, N., Herrera, F., Fyfe, C., Benítez, J.M., Ali, M. (eds) Trends in Applied Intelligent Systems. IEA/AIE 2010. Lecture Notes in Computer Science(), vol 6097. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13025-0_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13025-0_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13024-3

  • Online ISBN: 978-3-642-13025-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Keywords

Publish with us

Policies and ethics

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载