+
Skip to main content

Using Local Symmetry for Landmark Selection

  • Conference paper
Computer Vision Systems (ICVS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5815))

Included in the following conference series:

  • 2011 Accesses

  • 1 Citation

Abstract

Most visual Simultaneous Localization And Mapping (SLAM) methods use interest points as landmarks in their maps of the environment. Often the interest points are detected using contrast features, for instance those of the Scale Invariant Feature Transform (SIFT). The SIFT interest points, however, have problems with stability, and noise robustness. Taking our inspiration from human vision, we therefore propose the use of local symmetry to select interest points. Our method, the MUlti-scale Symmetry Transform (MUST), was tested on a robot-generated database including ground-truth information to quantify SLAM performance. We show that interest points selected using symmetry are more robust to noise and contrast manipulations, have a slightly better repeatability, and above all, result in better overall SLAM performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics, Massachusetts. The MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  2. Frintrop, S., Jensfelt, P.: Attentional landmarks and active gaze control for visual slam. IEEE Transactions on Robotics 24(5) (2008)

    Google Scholar 

  3. Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(6), 1–16 (2007)

    Article  Google Scholar 

  4. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  5. Se, S., Lowe, D.G., Little, J.: Mobile robot localization and mapping with uncertainty using scale-invariant visual landmarks. International Journal of Robotics Research 21(8), 735–758 (2002)

    Article  Google Scholar 

  6. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Murillo, A.C., Guerrero, J.J., Sagues, C.: Surf features for efficient robot localization with omnidirectional images. In: IEEE International Conference on Robotics and Automation (ICRA), Rome, Italy, pp. 3901–3907 (2007)

    Google Scholar 

  8. Davison, A.J., Murray, D.: Simultaneous localization and map-building using active vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 865–880 (2002)

    Article  Google Scholar 

  9. Mozos, Ó.M., Gil, A., Ballesta, M., Reinoso, O.: Interest point detectors for visual SLAM. In: Borrajo, D., Castillo, L., Corchado, J.M. (eds.) CAEPIA 2007. LNCS (LNAI), vol. 4788, pp. 170–179. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Moreels, P., Perona, P.: Evaluation of features detectors and descriptors based on 3d objects. International Journal of Computer Vision 73(3), 263–284 (2007)

    Article  Google Scholar 

  11. Palmer, S.E., Hemenway, K.: Orientation and symmetry: Effects of multiple, rotational, and near symmetries. Journal of Experimental Psychology: Human Perception and Performance 4(4), 691–702 (1978)

    Article  Google Scholar 

  12. Kootstra, G., Nederveen, A., de Boer, B.: Paying attention to symmetry. In: Everingham, M., Needham, C., Fraile, R. (eds.) British Machine Vision Conference (BMVC 2008), Leeds, UK, pp. 1115–1125 (2008)

    Google Scholar 

  13. Kootstra, G., Schomaker, L.R.: Prediction of human eye fixations using symmetry. In: Cognitive Science Conference (CogSci), Amsterdam, NL (2009)

    Google Scholar 

  14. Driver, J., Baylis, G.C., Rafal, R.D.: Preserved figure-ground segregation and symmetry perception in visual neglect. Nature 360, 73–75 (1992)

    Article  Google Scholar 

  15. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  16. Marola, G.: Using symmetry for detecting and locating objects in a picture. Computer Vision, Graphics, and Image Processing 46, 179–195 (1989)

    Article  Google Scholar 

  17. Backer, G., Mertsching, B., Bollmann, M.: Data- and model-driven gaze control for an active-vision system. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(12), 1415–1429 (2001)

    Article  Google Scholar 

  18. Sela, G., Levine, M.D.: Real-time attention for robotic vision. Real-Time Imaging 3, 173–194 (1997)

    Article  Google Scholar 

  19. Heidemann, G.: Focus-of-attention from local color symmetries. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(7), 817–830 (2004)

    Article  Google Scholar 

  20. Reisfeld, D., Wolfson, H., Yeshurun, Y.: Context free attentional operators: The generalized symmetry transform. International Journal of Computer Vision 14, 119–130 (1995)

    Article  Google Scholar 

  21. Loy, G., Zelinsky, A.: Fast radial symmetry for detecting points of interest. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(8), 959–973 (2003)

    Article  Google Scholar 

  22. Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: Part I. Simultaneous localization and mapping: Part I. 13(2), 99–108 (2006)

    Google Scholar 

  23. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Van Gool, L.: A comparison of affine region detectors. International Journal of Computer Vision 65(1/2), 43–72 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kootstra, G., de Jong, S., Schomaker, L.R.B. (2009). Using Local Symmetry for Landmark Selection. In: Fritz, M., Schiele, B., Piater, J.H. (eds) Computer Vision Systems. ICVS 2009. Lecture Notes in Computer Science, vol 5815. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04667-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04667-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04666-7

  • Online ISBN: 978-3-642-04667-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Publish with us

Policies and ethics

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载