+
Skip to main content

Multistrategic Classification System of Melanocytic Skin Lesions: Architecture and First Results

  • Chapter
Computer Recognition Systems 3

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 57))

  • 1059 Accesses

  • 3 Citations

Summary

The paper presents a verified project of a computer system for multistrategic classification of melanocytic skin lesions, based on image analysis reinforced by machine learning and decision-making algorithms with the use of voting procedures. We applied Stolz, Menzies and Argenziano strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. http://www.dermoncology.med.nyu.edu/MMfacts.htm (April 28, 2001)

  2. Triller, R., Aitken, G., Luc, T.: Atlas of Dermatoscopy of Pigmented Skin Tumors (2008), http://www.plessfr/dermatoscopie

    Google Scholar 

  3. Stolz, W., Braun-Falco, O., Bilek, P., Landthaler, M., Burgdorf, W., Cognetta, A.: Atlas of Dermatoscopy. In: Czelej (ed.) Office, Lublin, Poland, p. 210 (2006) (in Polish)

    Google Scholar 

  4. Menzies, S.W.: Surface microscopy of pigmented skin tumors. Australas J. Dermatol. 38, 40–43 (1997)

    Google Scholar 

  5. Argenziano, G., Fabbrocini, G., Carli, P., De Giorgi, V., Sammarco, E., Delfino, M.: Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions. Comparison of the ABCD rule of dermatoscopy and a new 7-point checklist based on pattern analysis. Arch. Dermatol. 134, 1563–1570 (1998)

    Google Scholar 

  6. Cichosz, P.: Learning Systems, pp. 565–567. WNT, Warsaw (2000) (in Polish)

    Google Scholar 

  7. Grzymala-Busse, J.W., Hippe, Z.S., Knap, M., Paja, W.: Infoscience Technology: The Impact of Internet Accessible Melanoid Data on Health Issues. Data Science Journal 4, 77–81 (2005)

    Google Scholar 

  8. Triller, R.: Quiz of Dermatoscopy. Diagnosis of pigmented skin tumors (2008)

    Google Scholar 

  9. Ludwiczuk, R.: Canny Edge Detection Algorithm in Medical Image Segmentation Process. In: II Conference of Computer Enthusiasts, Cheşm (2003) (in Polish)

    Google Scholar 

  10. Czechowicz, A., Mikrut, S.: Review of Edge Detection Algorithms in Close Range Photogrammetry. Archive of Photogrammetry, Cartography and Teledetection 16, 135–146 (2006) (in Polish)

    Google Scholar 

  11. Ng, V., Cheung, D.: Measuring Asymmetry of Skin Lesions. Proc. Computational Cybernetics and Simulationapos, 4211–4216 (1997)

    Google Scholar 

  12. d’Amico, M., Ferri, M., Stanganelli, I.: Qualitative Asymmetry Measure for melanoma detection. In: Proc. International Symposium on Volume, pp. 1155–1158 (2004)

    Google Scholar 

  13. Seidenari, S., Burroni, M., Dell’Eva, G., Pepe, P.: Computerized evaluation of pigmented skin lesion images recorded by a videomicroscope: compersion between polarizing mode observation and oil/slide mode observation. Skin Res. Technol., 187–191 (1995)

    Google Scholar 

  14. Green, A., Martin, N., Pfitzner, J., O’Rourke, M.: Computer image analysis in the diagnosis of melanoma. Journal of the American Academy of Dermatology 31, 958–964 (1994)

    Google Scholar 

  15. Horsch, A., Stolz, W., Neiss, A., Abmayr, W., Pompl, R., Bernklau, A., Bunk, W., Dersch, D.R., Glassl, A., Achiffner, R., Morfill, G.: Improving early recognition of malignant melanomas by digital image analysis in dermatoscopy. Stud. Health Technol. Inform. 43, 531–535 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cudek, P., Grzymala-Busse, J.W., Hippe, Z.S. (2009). Multistrategic Classification System of Melanocytic Skin Lesions: Architecture and First Results. In: Kurzynski, M., Wozniak, M. (eds) Computer Recognition Systems 3. Advances in Intelligent and Soft Computing, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-93905-4_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-93905-4_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-93904-7

  • Online ISBN: 978-3-540-93905-4

  • eBook Packages: EngineeringEngineering (R0)

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Publish with us

Policies and ethics

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载