+
X
Skip to main content

Advertisement

Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2000
  3. Conference paper

The Skull Stripping Problem in MRI Solved by a Single 3D Watershed Transform

  • Conference paper
  • pp 134–143
  • Cite this conference paper
Medical Image Computing and Computer-Assisted Intervention – MICCAI 2000 (MICCAI 2000)
The Skull Stripping Problem in MRI Solved by a Single 3D Watershed Transform
  • Horst K. Hahn7 &
  • Heinz-Otto Peitgen7 

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1935))

Included in the following conference series:

  • International Conference on Medical Image Computing and Computer-Assisted Intervention
  • 3407 Accesses

  • 110 Citations

Abstract

A robust method for the removal of non-cerebral tissue in T1-weighted magnetic resonance (MR) brain images is presented. This procedure, often referred to as skull stripping, is an important step in neuroimaging. Our novel approach consists of a single morphological operation, namely a modified three-dimensional fast watershed transform that is perfectly suited to locate the brain, including the cerebellum and the spinal cord.

The main advantages of our method lie in its simplicity and robustness. It is simple since neither preprocessing of the MRI data nor contour refinement is required. Furthermore, the skull stripping solely relies on one basic anatomical fact, i.e. the three-dimensional connectivity of white matter. As long as this feature is observed in the image data, a robust segmentation can be guaranteed independently from image orientation and slicing, even in presence of severe intensity non-uniformity and noise. For that purpose, the watershed algorithm has been modified by the concept of pre-flooding, which helps to prevent over-segmentation, depending on a single parameter. The automatic selection of the optimal parameter as well as the applicability are discussed based on the results of phantom and clinical brain studies.

Download to read the full chapter text

Chapter PDF

Similar content being viewed by others

Skull Stripping for MRI Images Using Morphological Operators

Chapter © 2016

Methods on Skull Stripping of MRI Head Scan Images—a Review

Article 01 December 2015

Skull Stripping of Brain MRI Using Mathematical Morphology

Chapter © 2020

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Brain Mapping
  • Image Processing
  • Liquid-liquid extraction
  • Magnetic Resonance Imaging
  • Tomography
  • 3-D Image Reconstruction

References

  1. Kikinis, R., Shenton, M.E., Gerig, G., Martin, J., Anderson, M., Metcalf, D., Guttmann, C.R.G., McCarley, R.W., Lorensen, W., Cline, H., Jolesz, F.A.: Routine Quantitative Analysis of Brain and Cerebrospinal Fluid Spaces with MR Imaging. J. Magnetic Resonance Imaging 2, 619–629 (1992)

    Article  Google Scholar 

  2. Kapur, T., Grimson, W.E.L., Wells, W.M., Kikinis, R.: Segmentation of Brain Tissue from Magnetic Resonance Images. Medical Image Analysis 1(2), 109–127 (1996)

    Article  Google Scholar 

  3. Sandor, S., Leahy, R.: Surface-Based Labeling of Cortical Antomy using a Deformable Atlas. IEEE Trans. Med. Imaging 16(1), 41–54 (1997)

    Article  Google Scholar 

  4. Aboutanos, G.B., Dawant, B.M.: Automatic Brain Segmentation and Validation: Image-Based versus Atlas-Based Deformable Models. In: Proc. SPIE Med. Imaging 1997, February 1997, pp. 299–310 (1997)

    Google Scholar 

  5. Freeborough, P.A., Fox, N.C., Kitney, R.I.: Interactive Algorithms for the Segmentation and Quantification of 3D MRI Brain Scans. Comput. Metho. Progr. Biomed. 53(1), 15–25 (1997)

    Article  Google Scholar 

  6. Atkins, M.S., Mackiewich, B.T.: Fully Automatic Segmentation of the Brain in MRI. IEEE Trans. Med. Imaging 17(1), 98–107 (1998)

    Article  Google Scholar 

  7. Goldszal, A.F., Davatzikos, C., Pham, D.L., Yan, M.X.H., Bryan, R.N., Resnick, S.M.: An Image Processing System for Qualitative and Quantitative Volumetric Analysis of Brain Images. J. Comput. Assist. Tomogr. 22(5), 827–837 (1998)

    Article  Google Scholar 

  8. Dale, A.M., Fischl, B., Sereno, M.I.: Cortical Surface-Based Analysis: I. Segmentation and Surface Reconstruction. NeuroImage 9, 179–194 (1999)

    Article  Google Scholar 

  9. Rehm, K., Shattuck, D., Leahy, R., Schaper, K., Rottenberg, D.: Semi-Automated Stripping of T1 MRI Volumes: I. Consensus of Intensity- and Edge-Based Methods. In: Proc. 5th Int. Conf. on Functional Mapping of the Human Brain HBM 1999, Düsseldorf, poster no. 86 (1999), abstract pub. in NeuroImage

    Google Scholar 

  10. Hojjatoleslami, S.A., Kruggel, F., von Cramon, D.Y.: Segmentation of White Matter Lesions from Volumetric MR Images. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 52–61. Springer, Heidelberg (1999)

    Google Scholar 

  11. Wells, W.M., Grimson, W.E.L., Kikinis, R., Jolesz, F.A.: Adaptive Segmentation of MRI data. IEEE Trans. Med. Imaging 15, 429–443 (1996)

    Article  Google Scholar 

  12. Pham, D.L., Prince, J.L.: Adaptive Fuzzy Segmentation of Magnetic Resonance Images. IEEE Trans. Med. Imaging 18(9), 737–752 (1999)

    Article  Google Scholar 

  13. Maes, F., Van Leemput, K., DeLisi, L.E., Vandermeulen, D., Suetens, P.: Quantification of Cerebral Gray and White Matter Asymmetry from MRI. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 348–357. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  14. Toga, A.W.: Brain Warping. Academic Press, San Diego (1999)

    Google Scholar 

  15. Frackowiak, R.S.J., Friston, K.J., Frith, C.D., Dolan, R.J., Mazziotta, J.C.: Human Brain Function. Academic Press, San Diego (1997), Statistical Parametric Mapping SPM, http://www.fil.ion.ucl.ac.uk/

  16. Worth, A.J., Makris, N., Caviness Jr., V.S., Kennedy, D.N.: Neuroanatomical Segmentation in MRI: Technological Objectives. Int. J. Pattern Rec. Art. Int. 11(8), 1161–1187

    Google Scholar 

  17. Serra, J.: Image Analysis and Mathematical Morphology. Academic, London (1982)

    MATH  Google Scholar 

  18. Mittelhaeusser, G., Kruggel, F.: Fast Segmentation of Brain Magnetic Resonance Tomograms. In: Ayache, N. (ed.) CVRMed 1995, vol. 905. Springer, Heidelberg (1995)

    Google Scholar 

  19. Cocosco, C.A., Kollokian, V., Kwan, R.K.-S., Evans, A.C.: BrainWeb: Online Interface to a 3D MRI Simulated Brain Database. In: Proc. 3rd Int. Conf. on Functional Mapping of the Human Brain HBM 1997, Copenhagen (1997); NeuroImage 5(4): part 2/4, S425 (May 1997), http://www.bic.mni.mcgill.ca/brainweb/

  20. Collins, D.L., Zijdenbos, A.P., Kollokian, V., Sled, J.G., Kabani, N.J., Holmes, C.J., Evans, A.C.: Design and Construction of a Realistic Digital Brain Phantom. IEEE Trans. Med. Imaging 17(3), 463–468 (1998)

    Article  Google Scholar 

  21. Schenk, A., Breitenborn, J., Selle, D., Schindewolf, T., Böhm, D., Spindler, W., Jürgens, H., Peitgen, H.-O.: ILabMed-Workstation – Eine Entwicklungsumgebung für radiologische Anwendungen. In: Proc. Bildverarbeitung für die Medizin 1999, pp. 238–242. Springer, Heidelberg (1999)

    Google Scholar 

  22. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C. Cambridge University Press, Cambridge (1988/1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. MeVis – Center for Medical Diagnostic Systems and Visualization, Universitätsallee 29, 28359, Bremen, Germany

    Horst K. Hahn & Heinz-Otto Peitgen

Authors
  1. Horst K. Hahn
    View author publications

    Search author on:PubMed Google Scholar

  2. Heinz-Otto Peitgen
    View author publications

    Search author on:PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Departments of Biomedical Engineering and Physical Medicine & Rehabilitation, Northwestern University & Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Room 1406, 345 East Superior St., IL 60611, Chicago, U.S.A

    Scott L. Delp

  2. UPMC Shadyside Hospital and Carnegie Mellon University, 15232, Pittsburgh, PA, USA

    Anthony M. DiGoia

  3. Carnegie Mellon University, Pittsburgh, Pennsylvania, USA

    Branislav Jaramaz

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hahn, H.K., Peitgen, HO. (2000). The Skull Stripping Problem in MRI Solved by a Single 3D Watershed Transform. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2000. MICCAI 2000. Lecture Notes in Computer Science, vol 1935. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-40899-4_14

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-540-40899-4_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41189-5

  • Online ISBN: 978-3-540-40899-4

  • eBook Packages: Springer Book Archive

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Whole brain segmentation
  • skull stripping
  • 3D watershed transform
  • pre-flooding
  • neurological image processing

Publish with us

Policies and ethics

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

23.94.208.52

Not affiliated

Springer Nature

© 2025 Springer Nature

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载