Abstract
This paper describes a factored discriminative spoken language understanding method suitable for real-time parsing of recognised speech. It is based on a set of logistic regression classifiers, which are used to map input utterances into dialogue acts. The proposed method is evaluated on a corpus of spoken utterances from the Public Transport Information (PTI) domain. In PTI, users can interact with a dialogue system on the phone to find intra- and inter-city public transport connections and ask for weather forecast in a desired city. The results show that in adverse speech recognition conditions, the statistical parser yields significantly better results compared to the baseline well-tuned handcrafted parser.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kate, R.J., Wong, Y.W., Mooney, R.J.: Learning to Transform Natural to Formal Languages. In: Proceedings of AAAI, pp. 1062–1068 (2005)
Mairesse, F., Gasic, M., Jurčíček, F., Keizer, S., Thomson, B., Yu, K., Young, S.: Spoken language understanding from unaligned data using discriminative classification models. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 4749–4752 (2009)
Thomson, B., Gašić, M., Keizer, S., Mairesse, F., Schatzmann, J., Yu, K., Young, S.: User study of the Bayesian update of dialogue state approach to dialogue management. In: Proceedings of Interspeech, pp. 483–486 (2008)
Williams, J., Young, S.: Partially observable Markov decision processes for spoken dialog systems. Computer Speech and Language 21(2), 393–422 (2007)
Public Transport Information System for Czech Republic (2014), https://ufal.mff.cuni.cz/alex-dialogue-systems-framework/ptics
Žilka, L., Marek, D., Korvas, M., Jurčíček, F.: Comparison of Bayesian Discriminative and Generative Models for Dialogue State Tracking. In: SIGDIAL 2013: Proc. of the 14th Annual Meeting of the Special Interest Group on Discourse and Dialogue, Metz, France, pp. 452–457 (2013)
He, Y., Young, S.: Semantic processing using the Hidden Vector State model. Computer Speech & Language 19(1), 85–106 (2005)
Jurčíček, F., Švec, J., Müller, L.: Extension of the HVS semantic parser by allowing left-right branching. In: Proceedings of ICASSP, pp. 4993–4996 (2008)
Zhu, J., Hastie, T.: Kernel logistic regression and the import vector machine. Journal of Computational and Graphical Statistics 14(1), 109–185 (2005)
Zettlemoyer, L.S., Collins, M.: Online learning of relaxed CCG grammars for parsing to logical form. In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp. 678–687 (2007)
Dahl, D.A., Bates, M., Brown, M., Fisher, W., Hunicke-Smith, K., Pallett, D., Pao, C., Rudnicky, A., Shriberg, E.: Expanding the scope of the ATIS task: The ATIS-3 corpus. In: Proceedings of the ARPA HLT Workshop, pp. 43–48 (1994)
Meza-Ruiz, I.V., Riedel, S., Lemon, O.: Spoken Language Understanding in dialogue systems, using a 2-layer Markov Logic Network: Improving semantic accuracy. In: Proceedings of Londial (2008)
Tür, G., Hakkani-Tür, D.Z., Hillard, D., Celikyilmaz, A.: Unsupervised Spoken Language Understanding: Exploiting Query Click Logs for Slot Filling. In: Proceedings of Interspeech, pp. 1293–1296 (2011)
Henderson, J.: Semantic Decoder which Exploits Syntactic-Semantic Parsing, for the TownInfo Task. In: CLASSiC Project Deliverable 2.2 (2009)
Wong, Y.W., Mooney, R.J.: Learning for Semantic Parsing with Statistical Machine Translation. In: Proceedings of HLT/NAACL, pp. 439–446 (2006)
Tang, L.R., Mooney, R.J.: Using multiple clause constructors in inductive logic programming for semantic parsing. In: Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, p. 466. Springer, Heidelberg (2001)
Morbini, F., Audhkhasi, K., Sagae, K., Arstein, R., Can, D., Georgiou, P.G., Narayanan, S.S., Leuski, A., Traum, D.: Which ASR should I choose for my dialogue system? In: Proc. of SIGDIAL, Metz, France, pp. 394–403 (2013)
Pedregosa, F., et al.: Scikit-learn: Machine Learning in Python. JMLR 12, 2825–2830 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Jurčíček, F., Dušek, O., Plátek, O. (2014). A Factored Discriminative Spoken Language Understanding for Spoken Dialogue Systems. In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds) Text, Speech and Dialogue. TSD 2014. Lecture Notes in Computer Science(), vol 8655. Springer, Cham. https://doi.org/10.1007/978-3-319-10816-2_70
Download citation
DOI: https://doi.org/10.1007/978-3-319-10816-2_70
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10815-5
Online ISBN: 978-3-319-10816-2
eBook Packages: Computer ScienceComputer Science (R0)