+
Skip to main content

Logo Detection and Recognition Based on Classification

  • Conference paper
Web-Age Information Management (WAIM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8485))

Included in the following conference series:

  • 6184 Accesses

  • 4 Citations

Abstract

Online product frauds in the booming e-commerce market have become a major concern for market surveillants and commercial companies. The logo detection plays a crucial role in preventing the increasing online counterfeit trading attempts. In this paper, a novel method based on Random Forest classification with multi-type features is presented to detect the logo regions on arbitrary images and the detected logo regions are further recognized using the visual words with spatial correlated information. Extensive experiments have been conducted on realistic and noise images with different logos. The results show that the proposed method is able to detect the logo regions, and the recognition performance outperforms the well-known Viola-Jones approach for recognizing the arbitrary logos on realistic images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Otim, S., Grover, V.: E-commerce: a brand name’s curse. Electronic Markets 20(2), 147–160 (2010)

    Article  Google Scholar 

  2. Zhang, C., Zhang, Z.: Boosting-based face detection and adaptation. Synthesis Lectures on Computer Vision 2(1), 1–140 (2010)

    Article  Google Scholar 

  3. Castrillón, M., Déniz, O., Hernández, D., Lorenzo, J.: A comparison of face and facial feature detectors based on the viola–jones general object detection framework. Machine Vision and Applications 22(3), 481–494 (2011)

    Google Scholar 

  4. Mita, T., Kaneko, T., Hori, O.: Joint haar-like features for face detection. In: Tenth IEEE International Conference on Computer Vision, ICCV 2005, vol. 2, pp. 1619–1626. IEEE (2005)

    Google Scholar 

  5. Zhang, C., Platt, J.C., Viola, P.A.: Multiple instance boosting for object detection. In: Advances in Neural Information Processing Systems, pp. 1417–1424 (2005)

    Google Scholar 

  6. Joly, A., Buisson, O.: Logo retrieval with a contrario visual query expansion. In: Proceedings of the 17th ACM International Conference on Multimedia, pp. 581–584. ACM (2009)

    Google Scholar 

  7. Doermann, D., Rivlin, E., Weiss, I.: Applying algebraic and differential invariants for logo recognition. Machine Vision and Applications 9(2), 73–86 (1996)

    Article  Google Scholar 

  8. Li, Z., Schulte-Austum, M., Neschen, M.: Fast logo detection and recognition in document images. In: 2010 20th International Conference on Pattern Recognition (ICPR). IEEE, pp. 2716–2719 (2010)

    Google Scholar 

  9. Hassanzadeh, S., Pourghassem, H.: A fast logo recognition algorithm in noisy document images. In: 2011 International Conference on Intelligent Computation and Bio-Medical Instrumentation (ICBMI), pp. 64–67. IEEE (2011)

    Google Scholar 

  10. Wang, H.: Document logo detection and recognition using bayesian model. In: 2010 20th International Conference on Pattern Recognition (ICPR), pp. 1961–1964. IEEE (2010)

    Google Scholar 

  11. Viola, P., Jones, M.J.: Robust real-time face detection. International Journal of Computer Vision 57(2), 137–154 (2004)

    Article  Google Scholar 

  12. Tuzel, O., Porikli, F., Meer, P.: Pedestrian detection via classification on riemannian manifolds. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(10), 1713–1727 (2008)

    Article  Google Scholar 

  13. Chen, Y., Thing, V.L.L.: A Noise-Tolerant Enhanced Classification Method for Logo Detection and Brand Classification. In: Kim, T.-H., Adeli, H., Fang, W.-C., Villalba, J.G., Arnett, K.P., Khan, M.K. (eds.) SecTech 2011. CCIS, vol. 259, pp. 31–42. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, pp. 886–893. IEEE (2005)

    Google Scholar 

  15. Lowe, D.G.: Object recognition from local scale-invariant features. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157. IEEE (1999)

    Google Scholar 

  16. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008)

    Article  Google Scholar 

  17. Prinzie, A., Van den Poel, D.: Random forests for multiclass classification: Random multinomial logit. Expert Systems with Applications 34(3), 1721–1732 (2008)

    Article  Google Scholar 

  18. Zhang, Y., Chen, T.: Efficient kernels for identifying unbounded-order spatial features. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 1762–1769. IEEE (2009)

    Google Scholar 

  19. Data mining software in java

    Google Scholar 

  20. Dbmm12-contest logo image database

    Google Scholar 

  21. Haralick, R.M., Shanmugam, K., Dinstein, I.H.: Textural features for image classification. IEEE Transactions on Systems, Man and Cybernetics (6), 610–621 (1973)

    Google Scholar 

  22. McIlhagga, W.: The canny edge detector revisited. International Journal of Computer Vision 91(3), 251–261 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hu, M.K.: Visual pattern recognition by moment invariants. IRE Transactions on Information Theory 8(2), 179–187 (1962)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhang, Y., Zhu, M., Wang, D., Feng, S. (2014). Logo Detection and Recognition Based on Classification. In: Li, F., Li, G., Hwang, Sw., Yao, B., Zhang, Z. (eds) Web-Age Information Management. WAIM 2014. Lecture Notes in Computer Science, vol 8485. Springer, Cham. https://doi.org/10.1007/978-3-319-08010-9_86

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08010-9_86

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08009-3

  • Online ISBN: 978-3-319-08010-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Keywords

Publish with us

Policies and ethics

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载