+
Skip to main content

LHU-Net: A Lean Hybrid U-Net for Cost-Efficient, High-Performance Volumetric Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2025 (MICCAI 2025)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15973))

  • 451 Accesses

  • 1 Citation

Abstract

The rise of Transformer architectures has advanced medical image segmentation, leading to hybrid models that combine Convolutional Neural Networks (CNNs) and Transformers. However, these models often suffer from excessive complexity and fail to effectively integrate spatial and channel features, crucial for precise segmentation. To address this, we propose LHU-Net, a Lean Hybrid U-Net for volumetric medical image segmentation. LHU-Net prioritizes spatial feature extraction before refining channel features, optimizing both efficiency and accuracy. Evaluated on four benchmark datasets (Synapse, Left Atrial, BraTS-Decathlon, and Lung-Decathlon), LHU-Net consistently outperforms existing models across diverse modalities (CT/MRI) and output configurations. It achieves state-of-the-art Dice scores while using four times fewer parameters and 20% fewer FLOPs than competing models, without the need for pre-training, additional data, or model ensembles. With an average of 11 million parameters, LHU-Net sets a new benchmark for computational efficiency and segmentation accuracy. Our implementation is available on github.com/xmindflow/LHUNet.

Y. Sadegheih and A. Bozorgpour—equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Antonelli, M., et al.: Med. Segmentation Decathlon Nat. Commun. 13(1), 4128 (2022)

    Google Scholar 

  2. Azad, R., et al.: Medical image segmentation review: The success of u-net. IEEE Trans. Pattern Anal. Mach. Intell. (2024)

    Google Scholar 

  3. Azad, R., et al.: Advances in medical image analysis with vision transformers: a comprehensive review. Med. Image Anal. 91, 103000 (2024)

    Article  Google Scholar 

  4. Azad, R., et al.: Beyond self-attention: deformable large kernel attention for medical image segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1287–1297 (2024)

    Google Scholar 

  5. Chen, Y., Lu, X., Xie, Q.: Collaborative networks of transformers and convolutional neural networks are powerful and versatile learners for accurate 3d medical image segmentation. Comput. Biol. Med. 164, 107228 (2023)

    Article  Google Scholar 

  6. Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., Brendel, W.: Imagenet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness (2018). arXiv preprint arXiv:1811.12231

  7. Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H.R., Xu, D.: Swin unetr: Swin transformers for semantic segmentation of brain tumors in MRI images. In: International MICCAI Brainlesion Workshop, pp. 272–284. Springer (2021)

    Google Scholar 

  8. Hatamizadeh, A., et al.: Unetr: Transformers for 3D medical image segmentation. In: Proceedings of the IEEE/CVF winter Conference on Applications of Computer Vision, pp. 574–584 (2022)

    Google Scholar 

  9. He, Y., Nath, V., Yang, D., Tang, Y., Myronenko, A., Xu, D.: Swinunetr-v2: Stronger swin transformers with stagewise convolutions for 3d medical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 416–426. Springer (2023)

    Google Scholar 

  10. Hong, Z., et al.: Dual encoder network with transformer-CNN for multi-organ segmentation. Med. Biol. Eng. Comput. 61(3), 661–671 (2023)

    Article  Google Scholar 

  11. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnu-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  12. Landman, B., Xu, Z., Igelsias, J., Styner, M., Langerak, T., Klein, A.: Miccai multi-atlas labeling beyond the cranial vault–workshop and challenge. In: Proceedings MICCAI Multi-Atlas Labeling Beyond Cranial Vault—Workshop Challenge, vol. 5, p. 12 (2015)

    Google Scholar 

  13. Li, J., Ye, J., Deng, H., Shi, H.: Cpftransformer: transformer fusion context pyramid medical image segmentation network. Front. Neurosci. 17, 1288366 (2023)

    Article  Google Scholar 

  14. Liu, Y., Zhang, Z., Yue, J., Guo, W.: Scanext: Enhancing 3D medical image segmentation with dual attention network and depth-wise convolution. Heliyon (2024)

    Google Scholar 

  15. Luo, X., Chen, J., Song, T., Wang, G.: Semi-supervised medical image segmentation through dual-task consistency. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 8801–8809 (2021)

    Google Scholar 

  16. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  17. Paszke, A., et al.: Pytorch: An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  18. Rahman, M.M., Shokouhmand, S., Bhatt, S., Faezipour, M.: Mist: Medical image segmentation transformer with convolutional attention mixing (cam) decoder. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 404–413 (2024)

    Google Scholar 

  19. Roy, S., et al.: Mednext: transformer-driven scaling of convnets for medical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 405–415. Springer (2023)

    Google Scholar 

  20. Shaker, A.M., Maaz, M., Rasheed, H., Khan, S., Yang, M.H., Khan, F.S.: Unetr++: Delving into efficient and accurate 3D medical image segmentation. IEEE Trans. Med. Imaging (2024). https://doi.org/10.1109/TMI.2024.3398728

    Article  Google Scholar 

  21. Simpson, A.L., et al.: A large annotated medical image dataset for the development and evaluation of segmentation algorithms (2019). arXiv preprint arXiv:1902.09063

  22. Wang, J., Zhao, H., Liang, W., Wang, S., Zhang, Y.: Cross-convolutional transformer for automated multi-organs segmentation in a variety of medical images. Phys. Med. Biol. 68(3), 035008 (2023)

    Article  Google Scholar 

  23. Wang, Y., Xiao, B., Bi, X., Li, W., Gao, X.: Mcf: Mutual correction framework for semi-supervised medical image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15651–15660 (2023)

    Google Scholar 

  24. Wenxuan, W., Chen, C., Meng, D., Hong, Y., Sen, Z., Jiangyun, L.: Transbts: Multimodal brain tumor segmentation using transformer. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, pp. 109–119 (2021)

    Google Scholar 

  25. Xie, Y., Zhang, J., Shen, C., Xia, Y.: CoTr: efficiently bridging CNN and transformer for 3D medical image segmentation. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 171–180. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_16

    Chapter  Google Scholar 

  26. Xiong, Z., et al.: A global benchmark of algorithms for segmenting the left atrium from late gadolinium-enhanced cardiac magnetic resonance imaging. Med. Image Anal. 67, 101832 (2021)

    Article  Google Scholar 

  27. Yang, F., Wang, F., Dong, P., Wang, B.: Hca-former: Hybrid convolution attention transformer for 3D medical image segmentation. Biomed. Signal Process. Control 90, 105834 (2024)

    Article  Google Scholar 

  28. Zhou, H.Y., et al.: nnformer: Volumetric medical image segmentation via a 3D transformer. IEEE Trans. Image Process. (2023)

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the computational and data resources provided by the Leibniz Supercomputing Centre. Also, the authors gratefully acknowledge the scientific support and HPC resources provided by the Erlangen National High-Performance Computing Center (NHR@FAU) of the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) under the NHR project “b213da”. NHR funding is provided by federal and Bavarian state authorities. NHR@FAU hardware is partially funded by the German Research Foundation (DFG) – 440719683. Also, this work was supported by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) under the grant no. 417063796.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorit Merhof .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2026 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sadegheih, Y., Bozorgpour, A., Kumari, P., Azad, R., Merhof, D. (2026). LHU-Net: A Lean Hybrid U-Net for Cost-Efficient, High-Performance Volumetric Segmentation. In: Gee, J.C., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2025. MICCAI 2025. Lecture Notes in Computer Science, vol 15973. Springer, Cham. https://doi.org/10.1007/978-3-032-05185-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-032-05185-1_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-032-05184-4

  • Online ISBN: 978-3-032-05185-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Keywords

Publish with us

Policies and ethics

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载