Abstract
Entanglement is a fundamental feature of quantum mechanics, playing a crucial role in quantum information processing. However, classifying entangled states, particularly in the mixed-state regime, remains a challenging problem, especially as system dimensions increase. In this work, we focus on bipartite quantum states and present a data-driven approach to entanglement classification using transformer-based neural networks. Our dataset consists of a diverse set of bipartite states, including pure separable states, Werner entangled states, general entangled states, and maximally entangled states. We pretrain the transformer in an unsupervised fashion by masking elements of vectorized Hermitian matrix representations of quantum states, allowing the model to learn structural properties of quantum density matrices. This approach enables the model to generalize entanglement characteristics across different classes of states. Once trained, our method achieves near-perfect classification accuracy, effectively distinguishing between separable and entangled states. Compared to previous Machine Learning, our method successfully adapts transformers for quantum state analysis, demonstrating their ability to systematically identify entanglement in bipartite systems. These results highlight the potential of modern machine learning techniques in automating entanglement detection and classification, bridging the gap between quantum information theory and artificial intelligence.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Bennett, C.H., DiVincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal, B.M.: Unextendible product bases and bound entanglement. Phys. Rev. Lett. 82(26), 5385–5388 (1999). https://doi.org/10.1103/PhysRevLett.82.5385
Cholewa, M., Gawron, P., Głomb, P., Kurzyk, D.: Quantum hidden Markov models based on transition operation matrices. Quantum Inf. Process. 16(4), 1–19 (2017). https://doi.org/10.1007/s11128-017-1544-8
Cramer, M., et al.: Efficient quantum state tomography. Nat. Commun. 1(1), 149 (2010). https://doi.org/10.1038/ncomms1147
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding (2019). https://arxiv.org/abs/1810.04805
Gawron, P., Kurzyk, D., Pawela, Ł.: QuantumInformation.jl—a julia package for numerical computation in quantum information theory. PLOS ONE 13(12), e0209358 (2018). https://doi.org/10.1371/journal.pone.0209358
Gisin, N., Thew, R.: Quantum communication. Nat. Photonics 1, 165–171 (2007). https://doi.org/10.1038/nphoton.2007.22
Goel, R., Xiao, Y., Ramezani, R.: Transformer models as an efficient replacement for statistical test suites to evaluate the quality of random numbers. In: 2024 International Symposium on Networks, Computers and Communications (ISNCC), pp. 1–6 (2024). https://doi.org/10.1109/ISNCC62547.2024.10758985
Goes, C., Canabarro, A., Duzzioni, E.I., Maciel, T.O.: Automated machine learning can classify bound entangled states with tomograms. Quantum Inf. Process. 20(3), 1–18 (2021). https://doi.org/10.1007/s11128-021-03037-9
Greenwood, A.C., Wu, L.T., Zhu, E.Y., Kirby, B.T., Qian, L.: Machine-learning-derived entanglement witnesses. Phys. Rev. Appl. 19(3), 034058 (2023). https://doi.org/10.1103/PhysRevApplied.19.034058
Gühne, O., Tóth, G.: Entanglement detection. Phys. Rep. 474(1–6), 1–75 (2009). https://doi.org/10.1016/j.physrep.2009.02.004
Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223(1–2), 1–8 (1996). https://doi.org/10.1016/S0375-9601(96)00706-2
Horodecki, P., Horodecki, M., Horodecki, R.: Mixed-state entanglement and distillation: is there a “bound” entanglement in nature? Phys. Rev. Lett. 80(24), 5239–5242 (1998). https://doi.org/10.1103/PhysRevLett.80.5239
Horodecki, P., Horodecki, M., Horodecki, R.: Bound entanglement can be activated. Phys. Rev. Lett. 82(5), 1056 (1999). https://doi.org/10.1103/PhysRevLett.82.1056
Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865–942 (2009). https://doi.org/10.1103/RevModPhys.81.865
Kukulski, R., Nechita, I., Pawela, Ł., Puchała, Z., Życzkowski, K.: Generating random quantum channels. J. Math. Phys. 62(6) (2021). https://doi.org/10.1063/5.0038838
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, 10th anniversary ed. edn. (2010)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press (2010)
Ozols, M.: How to generate a random unitary matrix. http://home.lu.lv/sd20008 (2009), Accessed 12 Feb 2025
Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413–1415 (1996). https://doi.org/10.1103/PhysRevLett.77.1413
Plenio, M.B., Virmani, S.: An introduction to entanglement measures. Quant. Inf. Comput. 7(1–2), 1–51 (2007). https://doi.org/10.5555/2011706.2011707
Puchała, Z., Jenčová, A., Sedlák, M., Ziman, M.: Exploring boundaries of quantum convex structures: special role of unitary processes. Phys. Rev. A 92, 012304 (2015). https://doi.org/10.1103/PhysRevA.92.012304
Śmierzchalski, T., Pawela, Ł., Puchała, Z., Trzciński, T., Gardas, B.: Post-error correction for quantum annealing processor using reinforcement learning. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) Computational Science – ICCS 2022, pp. 261–268. Springer (2022)
Vaswani, A., et al.: Attention is all you need. In: Guyon, I., Luxburg, U.V., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
Vidal, G., Werner, R.F.: A computable measure of entanglement. Phys. Rev. A 65(3), 032314 (2002). https://doi.org/10.1103/PhysRevA.65.032314
Watrous, J.: The Theory of Quantum Information. Cambridge University Press (2018)
Życzkowski, K.: Volume of the set of separable states. ii. Phys. Rev. A 60(5), 3496 (1999). https://doi.org/10.1103/PhysRevA.60.3496
Zyczkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: On the volume of the set of mixed entangled states. Phys. Rev. A 58, 883 (1998). https://doi.org/10.1103/PhysRevA.58.883, arXiv: quant-ph/9804024
Życzkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Volume of the set of separable states. Phys. Rev. A 58(2), 883 (1998). https://doi.org/10.1103/PhysRevA.58.883
Acknowledgments
This project was supported by the National Science Center (NCN), Poland, under Projects: Sonata Bis 10, No. 2020/38/E/ST3/00269 (L.P.)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests to declare that are relevant to the content of this article.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Sekuła, P., Romaszewski, M., Głomb, P., Cholewa, M., Pawela, Ł. (2025). Quantum-Aware Transformer Model for State Classification. In: Paszynski, M., Barnard, A.S., Zhang, Y.J. (eds) Computational Science – ICCS 2025 Workshops. ICCS 2025. Lecture Notes in Computer Science, vol 15911. Springer, Cham. https://doi.org/10.1007/978-3-031-97570-7_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-97570-7_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-97569-1
Online ISBN: 978-3-031-97570-7
eBook Packages: Computer ScienceComputer Science (R0)