+
Skip to main content

Quantum-Aware Transformer Model for State Classification

  • Conference paper
  • First Online:
Computational Science – ICCS 2025 Workshops (ICCS 2025)

Abstract

Entanglement is a fundamental feature of quantum mechanics, playing a crucial role in quantum information processing. However, classifying entangled states, particularly in the mixed-state regime, remains a challenging problem, especially as system dimensions increase. In this work, we focus on bipartite quantum states and present a data-driven approach to entanglement classification using transformer-based neural networks. Our dataset consists of a diverse set of bipartite states, including pure separable states, Werner entangled states, general entangled states, and maximally entangled states. We pretrain the transformer in an unsupervised fashion by masking elements of vectorized Hermitian matrix representations of quantum states, allowing the model to learn structural properties of quantum density matrices. This approach enables the model to generalize entanglement characteristics across different classes of states. Once trained, our method achieves near-perfect classification accuracy, effectively distinguishing between separable and entangled states. Compared to previous Machine Learning, our method successfully adapts transformers for quantum state analysis, demonstrating their ability to systematically identify entanglement in bipartite systems. These results highlight the potential of modern machine learning techniques in automating entanglement detection and classification, bridging the gap between quantum information theory and artificial intelligence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/iitis/LQM.

References

  1. Bennett, C.H., DiVincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal, B.M.: Unextendible product bases and bound entanglement. Phys. Rev. Lett. 82(26), 5385–5388 (1999). https://doi.org/10.1103/PhysRevLett.82.5385

    Article  MathSciNet  Google Scholar 

  2. Cholewa, M., Gawron, P., Głomb, P., Kurzyk, D.: Quantum hidden Markov models based on transition operation matrices. Quantum Inf. Process. 16(4), 1–19 (2017). https://doi.org/10.1007/s11128-017-1544-8

    Article  MathSciNet  Google Scholar 

  3. Cramer, M., et al.: Efficient quantum state tomography. Nat. Commun. 1(1), 149 (2010). https://doi.org/10.1038/ncomms1147

    Article  Google Scholar 

  4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding (2019). https://arxiv.org/abs/1810.04805

  5. Gawron, P., Kurzyk, D., Pawela, Ł.: QuantumInformation.jl—a julia package for numerical computation in quantum information theory. PLOS ONE 13(12), e0209358 (2018). https://doi.org/10.1371/journal.pone.0209358

  6. Gisin, N., Thew, R.: Quantum communication. Nat. Photonics 1, 165–171 (2007). https://doi.org/10.1038/nphoton.2007.22

    Article  Google Scholar 

  7. Goel, R., Xiao, Y., Ramezani, R.: Transformer models as an efficient replacement for statistical test suites to evaluate the quality of random numbers. In: 2024 International Symposium on Networks, Computers and Communications (ISNCC), pp. 1–6 (2024). https://doi.org/10.1109/ISNCC62547.2024.10758985

  8. Goes, C., Canabarro, A., Duzzioni, E.I., Maciel, T.O.: Automated machine learning can classify bound entangled states with tomograms. Quantum Inf. Process. 20(3), 1–18 (2021). https://doi.org/10.1007/s11128-021-03037-9

    Article  MathSciNet  Google Scholar 

  9. Greenwood, A.C., Wu, L.T., Zhu, E.Y., Kirby, B.T., Qian, L.: Machine-learning-derived entanglement witnesses. Phys. Rev. Appl. 19(3), 034058 (2023). https://doi.org/10.1103/PhysRevApplied.19.034058

    Article  Google Scholar 

  10. Gühne, O., Tóth, G.: Entanglement detection. Phys. Rep. 474(1–6), 1–75 (2009). https://doi.org/10.1016/j.physrep.2009.02.004

    Article  MathSciNet  Google Scholar 

  11. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223(1–2), 1–8 (1996). https://doi.org/10.1016/S0375-9601(96)00706-2

    Article  MathSciNet  Google Scholar 

  12. Horodecki, P., Horodecki, M., Horodecki, R.: Mixed-state entanglement and distillation: is there a “bound” entanglement in nature? Phys. Rev. Lett. 80(24), 5239–5242 (1998). https://doi.org/10.1103/PhysRevLett.80.5239

  13. Horodecki, P., Horodecki, M., Horodecki, R.: Bound entanglement can be activated. Phys. Rev. Lett. 82(5), 1056 (1999). https://doi.org/10.1103/PhysRevLett.82.1056

    Article  MathSciNet  Google Scholar 

  14. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865–942 (2009). https://doi.org/10.1103/RevModPhys.81.865

    Article  MathSciNet  Google Scholar 

  15. Kukulski, R., Nechita, I., Pawela, Ł., Puchała, Z., Życzkowski, K.: Generating random quantum channels. J. Math. Phys. 62(6) (2021). https://doi.org/10.1063/5.0038838

  16. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, 10th anniversary ed. edn. (2010)

    Google Scholar 

  17. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press (2010)

    Google Scholar 

  18. Ozols, M.: How to generate a random unitary matrix. http://home.lu.lv/sd20008 (2009), Accessed 12 Feb 2025

  19. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413–1415 (1996). https://doi.org/10.1103/PhysRevLett.77.1413

    Article  MathSciNet  Google Scholar 

  20. Plenio, M.B., Virmani, S.: An introduction to entanglement measures. Quant. Inf. Comput. 7(1–2), 1–51 (2007). https://doi.org/10.5555/2011706.2011707

    Article  MathSciNet  Google Scholar 

  21. Puchała, Z., Jenčová, A., Sedlák, M., Ziman, M.: Exploring boundaries of quantum convex structures: special role of unitary processes. Phys. Rev. A 92, 012304 (2015). https://doi.org/10.1103/PhysRevA.92.012304

    Article  Google Scholar 

  22. Śmierzchalski, T., Pawela, Ł., Puchała, Z., Trzciński, T., Gardas, B.: Post-error correction for quantum annealing processor using reinforcement learning. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) Computational Science – ICCS 2022, pp. 261–268. Springer (2022)

    Google Scholar 

  23. Vaswani, A., et al.: Attention is all you need. In: Guyon, I., Luxburg, U.V., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

  24. Vidal, G., Werner, R.F.: A computable measure of entanglement. Phys. Rev. A 65(3), 032314 (2002). https://doi.org/10.1103/PhysRevA.65.032314

    Article  Google Scholar 

  25. Watrous, J.: The Theory of Quantum Information. Cambridge University Press (2018)

    Google Scholar 

  26. Życzkowski, K.: Volume of the set of separable states. ii. Phys. Rev. A 60(5), 3496 (1999). https://doi.org/10.1103/PhysRevA.60.3496

  27. Zyczkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: On the volume of the set of mixed entangled states. Phys. Rev. A 58, 883 (1998). https://doi.org/10.1103/PhysRevA.58.883, arXiv: quant-ph/9804024

  28. Życzkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Volume of the set of separable states. Phys. Rev. A 58(2), 883 (1998). https://doi.org/10.1103/PhysRevA.58.883

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Science Center (NCN), Poland, under Projects: Sonata Bis 10, No. 2020/38/E/ST3/00269 (L.P.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Przemysław Sekuła .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sekuła, P., Romaszewski, M., Głomb, P., Cholewa, M., Pawela, Ł. (2025). Quantum-Aware Transformer Model for State Classification. In: Paszynski, M., Barnard, A.S., Zhang, Y.J. (eds) Computational Science – ICCS 2025 Workshops. ICCS 2025. Lecture Notes in Computer Science, vol 15911. Springer, Cham. https://doi.org/10.1007/978-3-031-97570-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-97570-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-97569-1

  • Online ISBN: 978-3-031-97570-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Keywords

Publish with us

Policies and ethics

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载