+
Skip to main content

Towards Stronger Blockchains: Security Against Front-Running Attacks

  • Conference paper
  • First Online:
Networked Systems (NETYS 2024)

Abstract

Blockchains add transactions to a distributed shared ledger by arriving at consensus on sets of transactions contained in blocks. This provides a total ordering on a set of global transactions. However, total ordering is not enough to satisfy application semantics under the Byzantine fault model. This is due to the fact that malicious miners and clients can collaborate to add their own transactions ahead of correct clients’ transactions in order to gain application level and financial advantages. These attacks fall under the umbrella of front-running attacks. In this paper, we propose causality preserving total order as a solution to this problem. The resulting blockchains will be stronger than traditional consensus based blockchains and will provide enhanced security ensuring correct application semantics in a Byzantine setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    BRB requires an upper bound of t Byzantine processes out of (\(3t+1\)) processes. In our case, the client becomes the \((3t+2)^{th}\) process in the system when broadcasting to the system of miners via BRB. In case the broadcasting client is Byzantine, correctness of the protocol can only be guaranteed when at most \((t-1)\) miners are Byzantine.

References

  1. Alpos, O., Amores-Sesar, I., Cachin, C., Yeo, M.: Eating sandwiches: modular and lightweight elimination of transaction reordering attacks. arXiv preprint arXiv:2307.02954 (2023)

  2. Asayag, A., et al.: A fair consensus protocol for transaction ordering. In: 2018 IEEE 26th International Conference on Network Protocols (ICNP), pp. 55–65. IEEE (2018)

    Google Scholar 

  3. Bracha, G.: Asynchronous byzantine agreement protocols. Inf. Comput. 75(2), 130–143 (1987)

    Article  MathSciNet  Google Scholar 

  4. Bracha, G., Toueg, S.: Asynchronous consensus and broadcast protocols. J. ACM (JACM) 32(4), 824–840 (1985)

    Article  MathSciNet  Google Scholar 

  5. Cachin, C., Kursawe, K., Petzold, F., Shoup, V.: Secure and efficient asynchronous broadcast protocols. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 524–541. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_31

    Chapter  Google Scholar 

  6. Cachin, C., Mićić, J., Steinhauer, N., Zanolini, L.: Quick order fairness. In: Eyal, I., Garay, J. (eds.) FC 2022. LNCS, vol. 13411, pp. 316–333. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-18283-9_15

    Chapter  Google Scholar 

  7. Canidio, A., Danos, V.: Commitment against front running attacks. arXiv preprint arXiv:2301.13785 (2023)

  8. Défago, X., Schiper, A., Urbán, P.: Total order broadcast and multicast algorithms: taxonomy and survey. ACM Comput. Surv. (CSUR) 36(4), 372–421 (2004)

    Article  Google Scholar 

  9. Dickerson, T., Gazzillo, P., Herlihy, M., Koskinen, E.: Adding concurrency to smart contracts. In: Proceedings of the ACM Symposium on Principles of Distributed Computing, pp. 303–312 (2017)

    Google Scholar 

  10. Dwork, C., Lynch, N.A., Stockmeyer, L.J.: Consensus in the presence of partial synchrony. J. ACM 35(2), 288–323 (1988)

    Article  MathSciNet  Google Scholar 

  11. Eskandari, S., Moosavi, S., Clark, J.: SoK: transparent dishonesty: front-running attacks on blockchain. In: Bracciali, A., Clark, J., Pintore, F., Rønne, P.B., Sala, M. (eds.) FC 2019. LNCS, vol. 11599, pp. 170–189. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43725-1_13

    Chapter  Google Scholar 

  12. Hahn, A., Singh, R., Liu, C.C., Chen, S.: Smart contract-based campus demonstration of decentralized transactive energy auctions. In: 2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), pp. 1–5. IEEE (2017)

    Google Scholar 

  13. Hanifatunnisa, R., Rahardjo, B.: Blockchain based e-voting recording system design. In: 2017 11th International Conference on Telecommunication Systems Services and Applications (TSSA), pp. 1–6. IEEE (2017)

    Google Scholar 

  14. Imbs, D., Raynal, M.: Trading off t-resilience for efficiency in asynchronous byzantine reliable broadcast. Parallel Process. Lett. 26(04), 1650017 (2016)

    Article  MathSciNet  Google Scholar 

  15. Kelkar, M., Deb, S., Kannan, S.: Order-fair consensus in the permissionless setting. In: Proceedings of the 9th ACM on ASIA Public-Key Cryptography Workshop, pp. 3–14 (2022)

    Google Scholar 

  16. Kelkar, M., Deb, S., Long, S., Juels, A., Kannan, S.: Themis: fast, strong order-fairness in byzantine consensus. In: Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security, pp. 475–489 (2023)

    Google Scholar 

  17. Khanchandani, P., Lenzen, C.: Self-stabilizing byzantine clock synchronization with optimal precision. Theory Comput. Syst. 63(2), 261–305 (2019)

    Article  MathSciNet  Google Scholar 

  18. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun. ACM 21(7), 558–565 (1978)

    Article  Google Scholar 

  19. Lamport, L., Shostak, R.E., Pease, M.C.: The byzantine generals problem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

    Article  Google Scholar 

  20. Malekpour, M.R.: A self-stabilizing byzantine-fault-tolerant clock synchronization protocol. Technical report (2009)

    Google Scholar 

  21. Misra, A., Kshemkalyani, A.D.: Solvability of byzantine fault-tolerant causal ordering problems. In: Koulali, M.A., Mezini, M. (eds.) NETYS 2022. LNCS, vol. 13464, pp. 87–103. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17436-0_7

    Chapter  Google Scholar 

  22. Misra, A., Kshemkalyani, A.D.: Byzantine fault-tolerant causal order satisfying strong safety. In: Dolev, S., Schieber, B. (eds.) SSS 2023. LNCS, vol. 14310, pp. 111–125. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-44274-2_10

    Chapter  Google Scholar 

  23. Misra, A., Kshemkalyani, A.D.: Byzantine fault-tolerant causal ordering. In: Proceedings of the 24th International Conference on Distributed Computing and Networking, pp. 100–109 (2023)

    Google Scholar 

  24. Misra, A., Kshemkalyani, A.D.: Byzantine-tolerant causal ordering for unicasts, multicasts, and broadcasts. IEEE Trans. Parallel Distrib. Syst. 35(5), 814–828 (2024). https://doi.org/10.1109/TPDS.2024.3368280

    Article  Google Scholar 

  25. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Decentralized business review (2008)

    Google Scholar 

  26. Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of faults. J. ACM 27(2), 228–234 (1980)

    Article  MathSciNet  Google Scholar 

  27. Polge, J., Robert, J., Le Traon, Y.: Permissioned blockchain frameworks in the industry: a comparison. ICT Exp. 7(2), 229–233 (2021)

    Article  Google Scholar 

  28. Saad, M., et al.: Exploring the attack surface of blockchain: a systematic overview. arXiv preprint arXiv:1904.03487 (2019)

  29. Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen ciphertext attack. J. Cryptol. 15(2), 75–96 (2002)

    Article  MathSciNet  Google Scholar 

  30. Torres, C.F., Camino, R., et al.: Frontrunner jones and the raiders of the dark forest: an empirical study of frontrunning on the ethereum blockchain. In: 30th USENIX Security Symposium (USENIX Security 2021), pp. 1343–1359 (2021)

    Google Scholar 

  31. Wood, G., et al.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Project Yellow Paper 151(2014), 1–32 (2014)

    Google Scholar 

  32. Zhang, W., et al.: Combatting front-running in smart contracts: attack mining, benchmark construction and vulnerability detector evaluation. IEEE Trans. Softw. Eng. 49(6), 3630–3646 (2023)

    Google Scholar 

  33. Züst, P., Nadahalli, T., Wattenhofer, Y.W.R.: Analyzing and preventing sandwich attacks in ethereum. ETH Zürich (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay D. Kshemkalyani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Misra, A., Kshemkalyani, A.D. (2024). Towards Stronger Blockchains: Security Against Front-Running Attacks. In: Castañeda, A., Enea, C., Gupta, N. (eds) Networked Systems. NETYS 2024. Lecture Notes in Computer Science, vol 14783. Springer, Cham. https://doi.org/10.1007/978-3-031-67321-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-67321-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-67320-7

  • Online ISBN: 978-3-031-67321-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载