Abstract
Blockchains add transactions to a distributed shared ledger by arriving at consensus on sets of transactions contained in blocks. This provides a total ordering on a set of global transactions. However, total ordering is not enough to satisfy application semantics under the Byzantine fault model. This is due to the fact that malicious miners and clients can collaborate to add their own transactions ahead of correct clients’ transactions in order to gain application level and financial advantages. These attacks fall under the umbrella of front-running attacks. In this paper, we propose causality preserving total order as a solution to this problem. The resulting blockchains will be stronger than traditional consensus based blockchains and will provide enhanced security ensuring correct application semantics in a Byzantine setting.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
BRB requires an upper bound of t Byzantine processes out of (\(3t+1\)) processes. In our case, the client becomes the \((3t+2)^{th}\) process in the system when broadcasting to the system of miners via BRB. In case the broadcasting client is Byzantine, correctness of the protocol can only be guaranteed when at most \((t-1)\) miners are Byzantine.
References
Alpos, O., Amores-Sesar, I., Cachin, C., Yeo, M.: Eating sandwiches: modular and lightweight elimination of transaction reordering attacks. arXiv preprint arXiv:2307.02954 (2023)
Asayag, A., et al.: A fair consensus protocol for transaction ordering. In: 2018 IEEE 26th International Conference on Network Protocols (ICNP), pp. 55–65. IEEE (2018)
Bracha, G.: Asynchronous byzantine agreement protocols. Inf. Comput. 75(2), 130–143 (1987)
Bracha, G., Toueg, S.: Asynchronous consensus and broadcast protocols. J. ACM (JACM) 32(4), 824–840 (1985)
Cachin, C., Kursawe, K., Petzold, F., Shoup, V.: Secure and efficient asynchronous broadcast protocols. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 524–541. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_31
Cachin, C., Mićić, J., Steinhauer, N., Zanolini, L.: Quick order fairness. In: Eyal, I., Garay, J. (eds.) FC 2022. LNCS, vol. 13411, pp. 316–333. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-18283-9_15
Canidio, A., Danos, V.: Commitment against front running attacks. arXiv preprint arXiv:2301.13785 (2023)
Défago, X., Schiper, A., Urbán, P.: Total order broadcast and multicast algorithms: taxonomy and survey. ACM Comput. Surv. (CSUR) 36(4), 372–421 (2004)
Dickerson, T., Gazzillo, P., Herlihy, M., Koskinen, E.: Adding concurrency to smart contracts. In: Proceedings of the ACM Symposium on Principles of Distributed Computing, pp. 303–312 (2017)
Dwork, C., Lynch, N.A., Stockmeyer, L.J.: Consensus in the presence of partial synchrony. J. ACM 35(2), 288–323 (1988)
Eskandari, S., Moosavi, S., Clark, J.: SoK: transparent dishonesty: front-running attacks on blockchain. In: Bracciali, A., Clark, J., Pintore, F., Rønne, P.B., Sala, M. (eds.) FC 2019. LNCS, vol. 11599, pp. 170–189. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43725-1_13
Hahn, A., Singh, R., Liu, C.C., Chen, S.: Smart contract-based campus demonstration of decentralized transactive energy auctions. In: 2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), pp. 1–5. IEEE (2017)
Hanifatunnisa, R., Rahardjo, B.: Blockchain based e-voting recording system design. In: 2017 11th International Conference on Telecommunication Systems Services and Applications (TSSA), pp. 1–6. IEEE (2017)
Imbs, D., Raynal, M.: Trading off t-resilience for efficiency in asynchronous byzantine reliable broadcast. Parallel Process. Lett. 26(04), 1650017 (2016)
Kelkar, M., Deb, S., Kannan, S.: Order-fair consensus in the permissionless setting. In: Proceedings of the 9th ACM on ASIA Public-Key Cryptography Workshop, pp. 3–14 (2022)
Kelkar, M., Deb, S., Long, S., Juels, A., Kannan, S.: Themis: fast, strong order-fairness in byzantine consensus. In: Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security, pp. 475–489 (2023)
Khanchandani, P., Lenzen, C.: Self-stabilizing byzantine clock synchronization with optimal precision. Theory Comput. Syst. 63(2), 261–305 (2019)
Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun. ACM 21(7), 558–565 (1978)
Lamport, L., Shostak, R.E., Pease, M.C.: The byzantine generals problem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982)
Malekpour, M.R.: A self-stabilizing byzantine-fault-tolerant clock synchronization protocol. Technical report (2009)
Misra, A., Kshemkalyani, A.D.: Solvability of byzantine fault-tolerant causal ordering problems. In: Koulali, M.A., Mezini, M. (eds.) NETYS 2022. LNCS, vol. 13464, pp. 87–103. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17436-0_7
Misra, A., Kshemkalyani, A.D.: Byzantine fault-tolerant causal order satisfying strong safety. In: Dolev, S., Schieber, B. (eds.) SSS 2023. LNCS, vol. 14310, pp. 111–125. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-44274-2_10
Misra, A., Kshemkalyani, A.D.: Byzantine fault-tolerant causal ordering. In: Proceedings of the 24th International Conference on Distributed Computing and Networking, pp. 100–109 (2023)
Misra, A., Kshemkalyani, A.D.: Byzantine-tolerant causal ordering for unicasts, multicasts, and broadcasts. IEEE Trans. Parallel Distrib. Syst. 35(5), 814–828 (2024). https://doi.org/10.1109/TPDS.2024.3368280
Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Decentralized business review (2008)
Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of faults. J. ACM 27(2), 228–234 (1980)
Polge, J., Robert, J., Le Traon, Y.: Permissioned blockchain frameworks in the industry: a comparison. ICT Exp. 7(2), 229–233 (2021)
Saad, M., et al.: Exploring the attack surface of blockchain: a systematic overview. arXiv preprint arXiv:1904.03487 (2019)
Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen ciphertext attack. J. Cryptol. 15(2), 75–96 (2002)
Torres, C.F., Camino, R., et al.: Frontrunner jones and the raiders of the dark forest: an empirical study of frontrunning on the ethereum blockchain. In: 30th USENIX Security Symposium (USENIX Security 2021), pp. 1343–1359 (2021)
Wood, G., et al.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Project Yellow Paper 151(2014), 1–32 (2014)
Zhang, W., et al.: Combatting front-running in smart contracts: attack mining, benchmark construction and vulnerability detector evaluation. IEEE Trans. Softw. Eng. 49(6), 3630–3646 (2023)
Züst, P., Nadahalli, T., Wattenhofer, Y.W.R.: Analyzing and preventing sandwich attacks in ethereum. ETH Zürich (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Misra, A., Kshemkalyani, A.D. (2024). Towards Stronger Blockchains: Security Against Front-Running Attacks. In: Castañeda, A., Enea, C., Gupta, N. (eds) Networked Systems. NETYS 2024. Lecture Notes in Computer Science, vol 14783. Springer, Cham. https://doi.org/10.1007/978-3-031-67321-4_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-67321-4_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-67320-7
Online ISBN: 978-3-031-67321-4
eBook Packages: Computer ScienceComputer Science (R0)