+
Skip to main content

Unsupervised Feature Ranking via Attribute Networks

  • Conference paper
  • First Online:
Discovery Science (DS 2021)

Abstract

The need for learning from unlabeled data is increasing in contemporary machine learning. Methods for unsupervised feature ranking, which identify the most important features in such data are thus gaining attention, and so are their applications in studying high throughput biological experiments or user bases for recommender systems. We propose FRANe (Feature Ranking via Attribute Networks), an unsupervised algorithm capable of finding key features in given unlabeled data set. FRANe is based on ideas from network reconstruction and network analysis. FRANe performs better than state-of-the-art competitors, as we empirically demonstrate on a large collection of benchmarks. Moreover, we provide the time complexity analysis of FRANe further demonstrating its scalability. Finally, FRANe offers as the result the interpretable relational structures used to derive the feature importances.

Supported by the Slovenian Research Agency (grant P2-0103 and a young researcher grant), and European Commission (grant 952215).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Backstrom, L., Leskovec, J.: Supervised random walks: predicting and recommending links in social networks. In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, WSDM 2011, pp. 635–644. Association for Computing Machinery, New York (2011). https://doi.org/10.1145/1935826.1935914

  2. Benavoli, A., Corani, G., Demšar, J., Zaffalon, M.: Time for a change: a tutorial for comparing multiple classifiers through Bayesian analysis. J. Mach. Learn. Res. 18(1), 2653–2688 (2017)

    MathSciNet  MATH  Google Scholar 

  3. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

  4. Bin Abdullah, I.: Incremental PageRank for Twitter data using hadoop. Master’s thesis, School of Informatics, University of Edinburgh, Scotland (2010)

    Google Scholar 

  5. Chiquet, J., Robin, S., Mariadassou, M.: Variational inference for sparse network reconstruction from count data. In: International Conference on Machine Learning, pp. 1162–1171. PMLR (2019)

    Google Scholar 

  6. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Doquet, G., Sebag, M.: Agnostic feature selection. In: Brefeld, U., Fromont, E., Hotho, A., Knobbe, A., Maathuis, M., Robardet, C. (eds.) ECML PKDD 2019. LNCS (LNAI), vol. 11906, pp. 343–358. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46150-8_21

    Chapter  Google Scholar 

  8. He, X., Cai, D., Niyogi, P.: Laplacian score for feature selection. In: Proceedings of the 18th International Conference on Neural Information Processing Systems, NIPS 2005, pp. 507–514. MIT Press, Cambridge (2005)

    Google Scholar 

  9. Langfelder, P., Horvath, S.: WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 9(1), 559 (2008)

    Article  Google Scholar 

  10. Li, J., et al.: Feature selection: a data perspective. ACM Comput. Surv. (CSUR) 50(6), 94 (2018)

    Article  Google Scholar 

  11. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: bringing order to the web. Technical report 1999-66, Stanford InfoLab (November 1999)

    Google Scholar 

  12. Sanguinetti, G., et al.: Gene regulatory network inference: an introductory survey. In: Sanguinetti, G., Huynh-Thu, V. (eds.) Gene Regulatory Networks, pp. 1–23. Springer, New York (2019). https://doi.org/10.1007/978-1-4939-8882-2_1

    Chapter  Google Scholar 

  13. Solorio-Fernández, S., Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F.: A review of unsupervised feature selection methods. Artif. Intell. Rev. 53(2), 907–948 (2019). https://doi.org/10.1007/s10462-019-09682-y

    Article  Google Scholar 

  14. Stańczyk, U., Jain, L.C. (eds.): Feature Selection for Data and Pattern Recognition. SCI, vol. 584. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-45620-0

    Book  MATH  Google Scholar 

  15. Wagle, N., Jasani, S., Gawand, S., Tilekar, S., Patil, P.: Twitter UserRank using hadoop MapReduce. In: Proceedings of the ACM Symposium on Women in Research 2016, WIR 2016, pp. 150–153, Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2909067.2909095

  16. Zhu, Z., Peng, Q., Guan, X.: Personalized PageRank based feature selection for high-dimension data. In: 2019 11th International Conference on Knowledge and Systems Engineering (KSE), pp. 1–6 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matej Petković .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Primožič, U., Škrlj, B., Džeroski, S., Petković, M. (2021). Unsupervised Feature Ranking via Attribute Networks. In: Soares, C., Torgo, L. (eds) Discovery Science. DS 2021. Lecture Notes in Computer Science(), vol 12986. Springer, Cham. https://doi.org/10.1007/978-3-030-88942-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88942-5_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88941-8

  • Online ISBN: 978-3-030-88942-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Keywords

Publish with us

Policies and ethics

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载