+
Skip to main content

Improved Inter-scanner MS Lesion Segmentation by Adversarial Training on Longitudinal Data

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11992))

Included in the following conference series:

Abstract

The evaluation of white matter lesion progression is an important biomarker in the follow-up of MS patients and plays a crucial role when deciding the course of treatment. Current automated lesion segmentation algorithms are susceptible to variability in image characteristics related to MRI scanner or protocol differences. We propose a model that improves the consistency of MS lesion segmentations in inter-scanner studies. First, we train a CNN base model to approximate the performance of icobrain, an FDA-approved clinically available lesion segmentation software. A discriminator model is then trained to predict if two lesion segmentations are based on scans acquired using the same scanner type or not, achieving a \(78\%\) accuracy in this task. Finally, the base model and the discriminator are trained adversarially on multi-scanner longitudinal data to improve the inter-scanner consistency of the base model. The performance of the models is evaluated on an unseen dataset containing manual delineations. The inter-scanner variability is evaluated on test-retest data, where the adversarial network produces improved results over the base model and the FDA-approved solution.

This project received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 765148. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government – department EWI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Biberacher, V., et al.: Intra- and interscanner variability of magnetic resonance imaging based volumetry in multiple sclerosis. NeuroImage 142, 188–197 (2016). https://doi.org/10.1016/j.neuroimage.2016.07.035

    Article  Google Scholar 

  2. Brosch, T., et al.: Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation. IEEE Trans. Med. Imaging 35(5), 1229–1239 (2016). https://doi.org/10.1109/TMI.2016.2528821

    Article  Google Scholar 

  3. Carass, A., et al.: Longitudinal multiple sclerosis lesion segmentation: resource and challenge. NeuroImage 148(C), 77–102 (2017). https://doi.org/10.1016/j.neuroimage.2016.12.064

    Article  Google Scholar 

  4. Ghafoorian, M., et al.: Transfer learning for domain adaptation in MRI: application in brain lesion segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 516–524. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_59

    Chapter  Google Scholar 

  5. Goodfellow, I.J., et al.: Generative adversarial networks (2014)

    Google Scholar 

  6. Jain, S., Ribbens, A., Sima, D.M., Van Huffel, S., Maes, F., Smeets, D.: Unsupervised framework for consistent longitudinal MS lesion segmentation. In: Müller, H., et al. (eds.) MCV/BAMBI -2016. LNCS, vol. 10081, pp. 208–219. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61188-4_19

    Chapter  Google Scholar 

  7. Jain, S., et al.: Automatic segmentation and volumetry of multiple sclerosis brain lesions from MR images. NeuroImage: Clin. 8, 367–375 (2015). https://doi.org/10.1016/j.nicl.2015.05.003

    Article  Google Scholar 

  8. Kamnitsas, K., et al.: Unsupervised domain adaptation in brain lesion segmentation with adversarial networks (December 2016)

    Google Scholar 

  9. Kamnitsas, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36(C), 61–78 (2017). https://doi.org/10.1016/j.media.2016.10.004

    Article  Google Scholar 

  10. Robben, D., Bertels, J., Willems, S., Vandermeulen, D., Maes, F., Suetens, P.: DeepVoxNet: voxel-wise prediction for 3D images (2018). https://lirias.kuleuven.be/retrieve/516811/paper.pdf

  11. Shiee, N., et al.: A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions. NeuroImage 49(2), 1524–1535 (2010). https://doi.org/10.1016/J.NEUROIMAGE.2009.09.005

    Article  Google Scholar 

  12. Shinohara, R.T., et al.: Volumetric analysis from a harmonized multisite brain MRI study of a single subject with multiple sclerosis. AJNR. Am. J. Neuroradiol. 38(8), 1501–1509 (2017). https://doi.org/10.3174/ajnr.A5254

    Article  Google Scholar 

  13. Valverde, S., et al.: Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach. NeuroImage 155, 159–168 (2017). https://doi.org/10.1016/j.neuroimage.2017.04.034

    Article  Google Scholar 

  14. Valverde, S., et al.: One-shot domain adaptation in multiple sclerosis lesion segmentation using convolutional neural networks. NeuroImage: Clin. 21, 101638 (2019). https://doi.org/10.1016/J.NICL.2018.101638

    Article  Google Scholar 

  15. Van Leemput, K., et al.: Automated segmentation of multiple sclerosis lesions by model outlier detection. IEEE Trans. Med. Imaging 20(8), 677–688 (2001). https://doi.org/10.1109/42.938237

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattias Billast .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Billast, M., Meyer, M.I., Sima, D.M., Robben, D. (2020). Improved Inter-scanner MS Lesion Segmentation by Adversarial Training on Longitudinal Data. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2019. Lecture Notes in Computer Science(), vol 11992. Springer, Cham. https://doi.org/10.1007/978-3-030-46640-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46640-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46639-8

  • Online ISBN: 978-3-030-46640-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载