+
Skip to main content

Implementing Propositional Networks on FPGA

  • Conference paper
  • First Online:
AI 2018: Advances in Artificial Intelligence (AI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11320))

Included in the following conference series:

  • 2666 Accesses

  • 3 Citations

Abstract

The speed of game rules processing plays an essential role in the performance of a General Game Playing (GGP) agent. Propositional Networks (propnets) are an example of a highly efficient representation of game rules. So far, in GGP, only software implementations of propnets have been proposed and investigated. In this paper, we present the first implementation of propnets on Field-Programmable Gate Arrays (FPGAs), showing that they perform between 25 and 58 times faster than a software-propnet for most of the tested games. We also integrate the FPGA-propnet within an MCTS agent, discussing the challenges of the process, and possible solutions for the identified shortcomings.

J. Kowalski—Supported in part by the National Science Centre, Poland under project number 2015/17/B/ST6/01893.

C. F. Sironi—Supported by the Netherlands Organisation for Scientific Research (NWO) under the GoGeneral project, grant number 612.001.121.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 47(2–3), 235–256 (2002)

    Article  Google Scholar 

  2. Boulé, M., Zilic, Z.: An FPGA move generator for the game of chess. ICGA J. 25(2), 85–94 (2002)

    Article  Google Scholar 

  3. Browne, C.B., et al.: A survey of Monte Carlo tree search methods. IEEE TCIAIG 4(1), 1–43 (2012)

    Google Scholar 

  4. Coulom, R.: Efficient selectivity and backup operators in Monte-Carlo tree search. In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M. (eds.) CG 2006. LNCS, vol. 4630, pp. 72–83. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75538-8_7

    Chapter  Google Scholar 

  5. Finnsson, H., Björnsson, Y.: Learning simulation control in general game playing agents. In: AAAI, pp. 954–959 (2010)

    Google Scholar 

  6. Genesereth, M., Love, N., Pell, B.: General game playing: overview of the AAAI competition. AI Mag. 26, 62–72 (2005)

    Google Scholar 

  7. Genesereth, M., Thielscher, M.: General Game Playing. Morgan & Claypool, San Rafael (2014)

    MATH  Google Scholar 

  8. Haiying, G., Fuming, W., Wei, L., Yun, L.: Monte Carlo simulation of 9x9 Go game on FPGA. In: 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS), Haiying, vol. 3, pp. 865–869 (2010)

    Google Scholar 

  9. Hsu, F.H.: Chess hardware in deep blue. Comput. Sci. Eng. 8(1), 50–60 (2006)

    Article  Google Scholar 

  10. Kowalski, J., Szykuła, M.: Game description language compiler construction. In: Cranefield, S., Nayak, A. (eds.) AI 2013. LNCS (LNAI), vol. 8272, pp. 234–245. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03680-9_26

    Chapter  Google Scholar 

  11. Love, N., Hinrichs, T., Haley, D., Schkufza, E., Genesereth, M.: General Game Playing: Game Description Language Specification. Technical report. Stanford Logic Group (2008)

    Google Scholar 

  12. Olivito, J., Resano, J., Briz, J.L.: Accelerating board games through hardware/software codesign. IEEE TCIAIG 9(4), 393–401 (2017)

    Google Scholar 

  13. Romoth, J., Porrmann, M., Rückert, U.: Survey of FPGA applications in the period 2000–2015, Technical report (2017)

    Google Scholar 

  14. Schkufza, E., Love, N., Genesereth, M.: Propositional automata and cell automata: representational frameworks for discrete dynamic systems. In: Wobcke, W., Zhang, M. (eds.) AI 2008. LNCS (LNAI), vol. 5360, pp. 56–66. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89378-3_6

    Chapter  Google Scholar 

  15. Schreiber, S.: The general game playing base package (2013). http://code.google.com/p/ggp-base/

  16. Schreiber, S.: Stanford Gamemaster (2016). http://games.ggp.org/stanford/

  17. Silver, D., et al.: Mastering the game of Go with deep neural networks and tree search. Nature 529, 484–503 (2016)

    Article  Google Scholar 

  18. Sironi, C.F., Winands, M.H.M.: Optimizing propositional networks. In: Cazenave, T., Winands, M.H.M., Edelkamp, S., Schiffel, S., Thielscher, M., Togelius, J. (eds.) CGW/GIGA -2016. CCIS, vol. 705, pp. 133–151. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57969-6_10

    Chapter  Google Scholar 

  19. Waugh, K.: Faster state manipulation in general games using generated code. In: IJCAI Workshop on General Intelligence in Game-Playing Agents (2009)

    Google Scholar 

  20. Wong, C., Lo, K., Leong, P.H.W.: An FPGA-based Othello endgame solver. In: Conference on Field-Programmable Technology 2004, pp. 81–88 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Kowalski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Siwek, C., Kowalski, J., Sironi, C.F., Winands, M.H.M. (2018). Implementing Propositional Networks on FPGA. In: Mitrovic, T., Xue, B., Li, X. (eds) AI 2018: Advances in Artificial Intelligence. AI 2018. Lecture Notes in Computer Science(), vol 11320. Springer, Cham. https://doi.org/10.1007/978-3-030-03991-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03991-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03990-5

  • Online ISBN: 978-3-030-03991-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Keywords

Publish with us

Policies and ethics

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载