Abstract
The speed of game rules processing plays an essential role in the performance of a General Game Playing (GGP) agent. Propositional Networks (propnets) are an example of a highly efficient representation of game rules. So far, in GGP, only software implementations of propnets have been proposed and investigated. In this paper, we present the first implementation of propnets on Field-Programmable Gate Arrays (FPGAs), showing that they perform between 25 and 58 times faster than a software-propnet for most of the tested games. We also integrate the FPGA-propnet within an MCTS agent, discussing the challenges of the process, and possible solutions for the identified shortcomings.
J. Kowalski—Supported in part by the National Science Centre, Poland under project number 2015/17/B/ST6/01893.
C. F. Sironi—Supported by the Netherlands Organisation for Scientific Research (NWO) under the GoGeneral project, grant number 612.001.121.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 47(2–3), 235–256 (2002)
Boulé, M., Zilic, Z.: An FPGA move generator for the game of chess. ICGA J. 25(2), 85–94 (2002)
Browne, C.B., et al.: A survey of Monte Carlo tree search methods. IEEE TCIAIG 4(1), 1–43 (2012)
Coulom, R.: Efficient selectivity and backup operators in Monte-Carlo tree search. In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M. (eds.) CG 2006. LNCS, vol. 4630, pp. 72–83. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75538-8_7
Finnsson, H., Björnsson, Y.: Learning simulation control in general game playing agents. In: AAAI, pp. 954–959 (2010)
Genesereth, M., Love, N., Pell, B.: General game playing: overview of the AAAI competition. AI Mag. 26, 62–72 (2005)
Genesereth, M., Thielscher, M.: General Game Playing. Morgan & Claypool, San Rafael (2014)
Haiying, G., Fuming, W., Wei, L., Yun, L.: Monte Carlo simulation of 9x9 Go game on FPGA. In: 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS), Haiying, vol. 3, pp. 865–869 (2010)
Hsu, F.H.: Chess hardware in deep blue. Comput. Sci. Eng. 8(1), 50–60 (2006)
Kowalski, J., Szykuła, M.: Game description language compiler construction. In: Cranefield, S., Nayak, A. (eds.) AI 2013. LNCS (LNAI), vol. 8272, pp. 234–245. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03680-9_26
Love, N., Hinrichs, T., Haley, D., Schkufza, E., Genesereth, M.: General Game Playing: Game Description Language Specification. Technical report. Stanford Logic Group (2008)
Olivito, J., Resano, J., Briz, J.L.: Accelerating board games through hardware/software codesign. IEEE TCIAIG 9(4), 393–401 (2017)
Romoth, J., Porrmann, M., Rückert, U.: Survey of FPGA applications in the period 2000–2015, Technical report (2017)
Schkufza, E., Love, N., Genesereth, M.: Propositional automata and cell automata: representational frameworks for discrete dynamic systems. In: Wobcke, W., Zhang, M. (eds.) AI 2008. LNCS (LNAI), vol. 5360, pp. 56–66. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89378-3_6
Schreiber, S.: The general game playing base package (2013). http://code.google.com/p/ggp-base/
Schreiber, S.: Stanford Gamemaster (2016). http://games.ggp.org/stanford/
Silver, D., et al.: Mastering the game of Go with deep neural networks and tree search. Nature 529, 484–503 (2016)
Sironi, C.F., Winands, M.H.M.: Optimizing propositional networks. In: Cazenave, T., Winands, M.H.M., Edelkamp, S., Schiffel, S., Thielscher, M., Togelius, J. (eds.) CGW/GIGA -2016. CCIS, vol. 705, pp. 133–151. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57969-6_10
Waugh, K.: Faster state manipulation in general games using generated code. In: IJCAI Workshop on General Intelligence in Game-Playing Agents (2009)
Wong, C., Lo, K., Leong, P.H.W.: An FPGA-based Othello endgame solver. In: Conference on Field-Programmable Technology 2004, pp. 81–88 (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Siwek, C., Kowalski, J., Sironi, C.F., Winands, M.H.M. (2018). Implementing Propositional Networks on FPGA. In: Mitrovic, T., Xue, B., Li, X. (eds) AI 2018: Advances in Artificial Intelligence. AI 2018. Lecture Notes in Computer Science(), vol 11320. Springer, Cham. https://doi.org/10.1007/978-3-030-03991-2_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-03991-2_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-03990-5
Online ISBN: 978-3-030-03991-2
eBook Packages: Computer ScienceComputer Science (R0)