Abstract
This article presents optimization results on the MOVA undeniable signature scheme presented last year by Monnerat and Vaudenay at PKC ’04 as well as its generalization proposed at Asiacrypt ’04 which is based on a secret group homomorphism. The original MOVA scheme uses characters on \({\bf Z}^{*}_{n}\) and some additional candidate homomorphisms were proposed with its generalization. We give an overview of the expected performance of the MOVA scheme depending on the group homomorphism. Our optimizations focus on the quartic residue symbol and a homomorphism based on the computation of a discrete logarithm in a hidden subgroup of \({\bf Z}^{*}_{n}\). We demonstrate that the latter provides a signature generation which is three times faster than RSA.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chaum, D., van Antwerpen, H.: Undeniable Signatures. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 212–216. Springer, Heidelberg (1990)
Damgård, I.B., Frandsen, G.S.: Efficient Algorithms for GCD and Cubic Residuosity in the Ring of Eisenstein Integers. In: Lingas, A., Nilsson, B.J. (eds.) FCT 2003. LNCS, vol. 2751, pp. 109–117. Springer, Heidelberg (2003)
Cohen, H.: A Course in Computational Algebraic Number Theory. Graduate Texts in Mathematics, vol. 138. Springer, Heidelberg (2000)
Garg, S.: How to optimize C/C++ Source - Performance Programming (2002), http://bdn.borland.com/article/0,1410,28278,00.html
Gennaro, R., Rabin, T., Krawczyk, H.: RSA-Based Undeniable Signatures. Journal of Cryptology 13(4), 397–416 (2000)
The GNU Multiple Precision Arithmetic Library, http://www.swox.com/gmp/
Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory, 2nd edn. Graduate Texts in Mathematics, vol. 84. Springer, Heidelberg (1990)
Lee, M.E.: Optimization of Computer Programs in C (2001), http://vision.eng.shu.ac.uk/bala/c/c/optimisation/l/optimization.html
Lefèvre, V.: Entiers de Gauss (sujet d’étude XM’) (1993), http://www.vinc17.org/math/index.fr.html
Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)
Meyer, S.M., Sorendson, J.P.: Efficient Algorithms for Computing the Jacobi Symbol. Journal of Symbolic Computation 26(4), 509–523 (1998)
Monnerat, J., Vaudenay, S.: Undeniable Signatures Based on Characters: How to Sign with One Bit. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 69–85. Springer, Heidelberg (2004)
Monnerat, J., Vaudenay, S.: Generic Homomorphic Undeniable Signatures. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 354–371. Springer, Heidelberg (2004)
Rivest, R.L., Shamir, A., Adleman, L.M.: A Method for Obtaining Digital Signatures and Public-key Cryptosystem. Communications of the ACM 21(2), 120–126 (1978)
Stinner, V.: frequence_cpu.h, frequence_cpu.c, http://www.haypocal.com/ (2003)
Weilert, A.: (1+i)-ary GCD Computation in Z[i] is an analogue to the Binary GCD Algorithm. Journal of Symbolic Computation 30(5), 605–617 (2000)
Weilert, A.: Asymptotically fast GCD Computation in Z[i]. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 595–613. Springer, Heidelberg (2000)
Weilert, A.: Fast Computation of the Biquadratic Residue Symbol. Journal of Number Theory 96, 133–151 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Monnerat, J., Oswald, Y.A., Vaudenay, S. (2005). Optimization of the MOVA Undeniable Signature Scheme. In: Dawson, E., Vaudenay, S. (eds) Progress in Cryptology – Mycrypt 2005. Mycrypt 2005. Lecture Notes in Computer Science, vol 3715. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11554868_14
Download citation
DOI: https://doi.org/10.1007/11554868_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28938-8
Online ISBN: 978-3-540-32066-1
eBook Packages: Computer ScienceComputer Science (R0)