+
Skip to main content

Optimization of the MOVA Undeniable Signature Scheme

  • Conference paper
Progress in Cryptology – Mycrypt 2005 (Mycrypt 2005)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 3715))

Included in the following conference series:

  • 569 Accesses

  • 4 Citations

Abstract

This article presents optimization results on the MOVA undeniable signature scheme presented last year by Monnerat and Vaudenay at PKC ’04 as well as its generalization proposed at Asiacrypt ’04 which is based on a secret group homomorphism. The original MOVA scheme uses characters on \({\bf Z}^{*}_{n}\) and some additional candidate homomorphisms were proposed with its generalization. We give an overview of the expected performance of the MOVA scheme depending on the group homomorphism. Our optimizations focus on the quartic residue symbol and a homomorphism based on the computation of a discrete logarithm in a hidden subgroup of \({\bf Z}^{*}_{n}\). We demonstrate that the latter provides a signature generation which is three times faster than RSA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chaum, D., van Antwerpen, H.: Undeniable Signatures. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 212–216. Springer, Heidelberg (1990)

    Google Scholar 

  2. Damgård, I.B., Frandsen, G.S.: Efficient Algorithms for GCD and Cubic Residuosity in the Ring of Eisenstein Integers. In: Lingas, A., Nilsson, B.J. (eds.) FCT 2003. LNCS, vol. 2751, pp. 109–117. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Cohen, H.: A Course in Computational Algebraic Number Theory. Graduate Texts in Mathematics, vol. 138. Springer, Heidelberg (2000)

    Google Scholar 

  4. Garg, S.: How to optimize C/C++ Source - Performance Programming (2002), http://bdn.borland.com/article/0,1410,28278,00.html

  5. Gennaro, R., Rabin, T., Krawczyk, H.: RSA-Based Undeniable Signatures. Journal of Cryptology 13(4), 397–416 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. The GNU Multiple Precision Arithmetic Library, http://www.swox.com/gmp/

  7. Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory, 2nd edn. Graduate Texts in Mathematics, vol. 84. Springer, Heidelberg (1990)

    MATH  Google Scholar 

  8. Lee, M.E.: Optimization of Computer Programs in C (2001), http://vision.eng.shu.ac.uk/bala/c/c/optimisation/l/optimization.html

  9. Lefèvre, V.: Entiers de Gauss (sujet d’étude XM’) (1993), http://www.vinc17.org/math/index.fr.html

  10. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)

    Book  Google Scholar 

  11. Meyer, S.M., Sorendson, J.P.: Efficient Algorithms for Computing the Jacobi Symbol. Journal of Symbolic Computation 26(4), 509–523 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Monnerat, J., Vaudenay, S.: Undeniable Signatures Based on Characters: How to Sign with One Bit. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 69–85. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Monnerat, J., Vaudenay, S.: Generic Homomorphic Undeniable Signatures. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 354–371. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Rivest, R.L., Shamir, A., Adleman, L.M.: A Method for Obtaining Digital Signatures and Public-key Cryptosystem. Communications of the ACM 21(2), 120–126 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  15. Stinner, V.: frequence_cpu.h, frequence_cpu.c, http://www.haypocal.com/ (2003)

  16. Weilert, A.: (1+i)-ary GCD Computation in Z[i] is an analogue to the Binary GCD Algorithm. Journal of Symbolic Computation 30(5), 605–617 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Weilert, A.: Asymptotically fast GCD Computation in Z[i]. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 595–613. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  18. Weilert, A.: Fast Computation of the Biquadratic Residue Symbol. Journal of Number Theory 96, 133–151 (2002)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Monnerat, J., Oswald, Y.A., Vaudenay, S. (2005). Optimization of the MOVA Undeniable Signature Scheme. In: Dawson, E., Vaudenay, S. (eds) Progress in Cryptology – Mycrypt 2005. Mycrypt 2005. Lecture Notes in Computer Science, vol 3715. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11554868_14

Download citation

  • DOI: https://doi.org/10.1007/11554868_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28938-8

  • Online ISBN: 978-3-540-32066-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Keywords

Publish with us

Policies and ethics

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载