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Abstract 

COMPS computer-mediated group discussion exercises are
being added to a second-semester  computer  programming
class. The class is a gateway for computer science and com-
puter engineering students, where many students have diffi-
culty succeeding well enough to proceed in their major. This
paper reports on first results of surveys on student experi-
ence with the exercises. It also reports on the affective states
observed in the discussions that are candidates for analysis
of group functioning. As a step toward computer monitoring
of the discussions, an experiment in using dialogue features
to identify the gender of the participants is described.

Introduction

The second Java programming class, GEEN 165, at North

Carolina A&T State University is  a  bottleneck for  many

Computer Science and Computer Engineering students. As

an experiment in improving student learning and interest,

COMPS computer-mediated discussion exercises (Glass et

al.,  2014a)  have  been  introduced.  This  paper  reports  on

first measurements of a) student self-efficacy and interest,

b) expressions of affect within the discussions. As a test of

our ability to have the computer monitor the conversation,

the expressions of affect were applied toward the task of

using dialogue features to identify the gender of the partici-

pant.

GEEN 165 corresponds to the CS2 (second semester)

class  in  the  ACM/IEEE  curriculum  (ACM/IEEE,  2013).

The historical success rate for students attempting GEEN

165 is  low. From 2003 to 2012,  comprising about  1000

student-semesters,  approximately  66%  of  students

succeeded  well  enough  (grade  C  or  better)  on  the  first

attempt to continue to the next class. The fact that so many

students have difficulty makes it potentially a fertile class

for experimenting with educational innovation.

Lab-based  computer  programming  classes

traditionally  permit  unstructured  group  interaction.

Students can talk to each other  even as they require  the

students to write their own software.  Therefore problem-

 Copyright retained by the authors.

solving discussions, where students respond to each other

in normal dialogue fashion, are a natural addition to the lab

component of a computer programming class.

NC A&T has migrated to an objects-later curriculum,

meaning that CS2 contains more object concepts than the

first  semester  CS1  class.  The  student  exercises  in  this

intervention are thus oriented toward object concepts.

Expressions of affect have three potential uses for this

project. One is they are indications of emotional states that

may  effect  student  enthusiasm,  self-efficacy  and

satisfaction.  Another  is  they  will  be  used  in  studies  of

group interaction. Finally, they may detectable by machine,

contributing  to  an  instructor's  dashboard  or  other

assessment of how well the group discussions are working.

Background

COMPS Dialogue Platform and Exercises

COMPS is a web-delivered computer-mediated chat envi-

ronment (Kim et al., 2013). It permits the instructor (or a

TA) to monitor each conversation. The dialogue data from

this study comes from log files. Attesting to the interactiv-

ity of the COMPS experience, about half of all typing oc-

curs while several students are typing. Even three students

at a time can be typing and responding to each other, all

contributing  to  the  same  discussion,  since  they  can  see

each other's keystrokes in real time. In spoken conversation

productive dialogue does not happen when three people are

talking at once, but we have shown that in the chat domain

it indeed occurs (Glass et al., 2015).

The exercises in this project involve students solving

multiple-choice  questions.  When  implementing  these  as

group collaborations, we pay attention to three principles

that promote successful collaborative learning: a structure

or  activity  script  for  the  students  to  follow,  creative

interdependence,  and  individual  accountability  (Eberly

Center, 2016).  The activity is  structured  as  follows. The

students are instructed to come to consensus on the answer,

then have one student approach the instructor or a TA to

verify the answer. That student is responsible for bringing
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the correct answer (or a hint) back to the group, and they

must  reach  consensus  again.  Creative  interdependence

means that students should need each other to complete the

exercise,  it  should  not  reasonable  for  one  or  several

students  to race  ahead and finish it  and leave the others

behind or let them not participate.  During the discussion

the obligations of  discourse require  that  students explain

themselves  in  the  course  of  reaching  consensus.  Having

conceptual  knowledge  as  the  learning  goal  promotes

explanatory dialogue. We have examples where seemingly

the weakest  student  serves  as  a  metacognitive  regulator,

challenging  or  directing  every  reasoning  step  and

becoming a  participant  in  all  dialogue  exchanges  as  the

other students seem to teach that weakest one (Glass et al.,

2013). Individual accountability typically occurs after the

group  exercise,  where  the  students  have  a  quiz  or  an

exercise  utilizing  what  they  have  learned.  Individual

accountability  also  occurs  within  the  discussion,  as  the

students  find themselves  responsible  for  explaining their

positions in order to reach consensus. 

Addressing Student Learning

Our  collaborative  inquiry  learning  exercises  are  in  line

with current practices  in Computer Supported Collabora-

tive Learning. A key concept is group cognition, where dif-

ferent  participants  in  a  conversation  contribute  different

parts  of  the  epistemic  knowledge  construction  task.  The

Virtual  Math  Teams  project,  where  students  solve  math

problems  through  computer-mediated  chat,  has  docu-

mented this phenomenon (Stahl, 2009). Learning through

group cognition is justified both in terms of learning out-

comes  and  student  motivation.  There  is  also  research

specifically showing that collaborative activity is a desir-

able pedagogical  approach for “relational  understanding”

or understanding  of  concepts  (Tchounikine  et  al.,  2010).

Dialogue that  engages  in  domain reasoning,  such as  ex-

plaining,  negotiating,  or  inferring  is  observed  in  these

kinds of exercises (Zhou, 2009; Stahl, 2004). 

The  implication  for  COMPS  technology  is  that

monitoring  the  health  of  student  conversations  could  be

informed by a) whether students are talking to each other,

b) whether they are engaging in reasoning activities.

Addressing Student Interest and Self-Efficacy

Group exercises address many of the components of stu-

dent interest. Interest refers to an individual’s psychologi-

cal inclination to participate in particular content over time

(Hidi & Renninger, 2006). There is a relationship between

interest,  achievement  goals,  performance  and  retention

(Harackiewicz et al., 2008). Interest plays a critical role in

students’ further decisions on engaging and reengaging in

the major (Brown, 2012). The four-phase model of interest

posits four sequential interest phases: triggered situational

interest (“catching”), maintained situational interest (“hold-

ing”), emerging individual interest, and well-developed in-

dividual interest. Mitchell (1993), as an example, reported

that using group work activities, computer-based activities,

engaging  puzzles,  and  meaningful  activities,  were  corre-

lated with triggering and holding interest in a mathematics

classroom.

Recently Kim and Schallert (2014) have investigated

the  mediating  effect  interpersonal  interactions  have  on

student interest.  It  is  possible to track student interest  in

four developmental phases throughout a semester, not just

within the time frame of individual activities. It is affected

not only by the enthusiasm expressed by the teacher and

fellow  students,  but  also  by  factors  such  as  affiliative

motivations: the desire to belong to the group. The social

factors  enhancing  interest  were  found  within  college

classes  in  a  number  of  diverse  disciplines  (e.g.  history,

chemistry, religion) in both upper and lower level college

classes. 

Viewed in this light,  group exercises  should address

student motivation issues through social interaction at the

same time as  they  address  learning  of  concepts  through

group  cognition.  The  exercises  are  constructed  so  that

students engage with other students, providing the small-

group interpersonal contact that best transmits enthusiasm.

The  students  know  the  teacher  is  watching  the

conversations  and  is  taking  an  active  interest  in  the

students'  progress,  sometimes  by  intervening  and

sometimes by providing answers and hints.

The  implication  for  COMPS  technology  is  that

monitoring  the  health  of  student  conversations  could  be

informed  by  expressions  of  student  affect.  Affect,  the

observable  manifestation  of  emotion,  mediates  social

interaction and is related to student interest. 

Self-efficacy,  an  individual’s belief  to  be  capable  of

performing  a  particular  task  (Bandura,  1977),  has  been

widely studied because of its relationship to performance

including academic achievement (Choi, 2005; Pajares and

Miller, 1995; Wood and Locke, 1987) and even choice of

major in college (Hackett,  1985). In  accordance with the

suggestions of  Finney and  Schraw (2003),  we measured

self-efficacy  using task-specific  survey items  rather  than

generalized questions. This project measures students’ self-

efficacy  both  at  the  level  of  the  skills  in  individual

assignments  at  the  time  of  the  COMPS  exercises  and

overall in the topics of the class at the beginning and end of

the semester. 

Data and Methods

We have collected data from one semester of the GEEN

165 class. There were 55 students at the start of the semes-

ter and 47 at the end. We administered COMPS exercises

four times during the semester, with 53 group discussions

in total. Most groups had 3 or 4 participants. The bulk of

students were assigned to sessions quasi-randomly as stu-
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dents arrived in lab. Cliques of friends, who tended to ar-

rive together, were split into different random groups. We

deviated from this protocol by creating a few all  female

groups,  for  comparison  with  the  all-male  groups.  Alto-

gether there were about 8000 dialogue turns. Students were

surveyed near the beginning and end of the semester re-

garding their enthusiasm for the class, their self-efficacy in

programming, and their desire to continue. Every COMPS

exercise was also accompanied by a survey of the student

experiences.

Transcript Processing and Annotation

Table  1  contains  an  extract  from  a  COMPS discussion.

From  COMPS  log  files  we  extract  dialogue  turns  in

spreadsheet format for processing. The text from one dia-

logue turn is in one line of the spreadsheet. In addition to

the metadata such as  problem number, turn number, and

time  stamp,  each  dialogue  turn  is  tagged  with  features.

Some are derived by software and some are annotated by

hand. These features are available for machine learning ex-

periments and for human analysis and study of dialogues.

The machine-derived classifiers  are available for  feeding

software that will monitor the health of the conversation.

Some of the existing machine-derived features (Glass

et al., 2014b) that have been relevant to transcript studies

and machine monitoring of the health of the conversation

are:

• The  presence  of  discourse  marker  words,  e.g.

“now” or “therefore” near the beginning of a dia-

logue  turn.  These  are  linguistically  associated

with reasoning, and are therefore possibly indica-

tive of productive discussion.

• The  presence  of  pronouns  that  include  another

participant  in  the  dialogue:  “you,”  “we,”  “us.”

These  are  possibly indicative  of  transactive  dis-

cussion.

• The presence of question marks.

• The  presence  of  emoticons.  It  is  possible  that

emoticons are associated with students attending

to each others affect.

• The length of a turn in words. 

• Whether  typing  this  turn  overlapped  with  other

people typing.

Affective States Evinced in Dialogue

Of particular interest are six affective states that we have

chosen as initial targets. These are annotated by hand. They

were chosen because they may be salient for monitoring

both the learning aspects (whether the students are reason-

ing together) and the social health of the conversation. We

show here some of the definitions that the coders have ap-

plied  for  consistency  in  recognizing  and  coding.  

• Excited. 

• Apologetic. Refers to a user expressing regret for

previous action. This type of message is usually

aimed towards another user or towards the group

as a whole.

• Humor.

• Frustrated.

• Confused.  User  explicitly  expressing  confusion,

or exhibiting confusion e.g. through questions.

• Sad. A negative emotion determined by keywords

and sad emoticons that are usually directed at self.

Some of these affective states have been tagged and

illustrated in the Table 1 dialogue. Table 2 indicates some

of the textual indications for the various states. These are

being  used  by  the  coders  at  present,  but  will  become

machine-derived  features  for  the  purpose  of  machine-

annotating the affective states.

Surveys

The survey administered  to all  students at  the beginning

and end of the semester has an interest part and a self-effi-

cacy part. The end-of-semester survey also inquires about

student plans for continuing in the major and registering

for  the  next  programming class.  All  items use  a 6-point

scale. The interest survey items are derived from a survey

from Harackiewicz et al. (2008). One of the authors of this

paper has utilized these items  to assess how much a stu-

dent's interest  in a class is affected by the enthusiasm of

fellow students (Kim and Schallert, 2014). Some represen-

tative items are “What we are learning in GEEN165 this

year can be applied to real life” and “To be honest, I don’t

find what we do in the GEEN165 class interesting.” The

self-efficacy  items  inquire  about  student  confidence  in

completing 13 tasks corresponding to class topics. This list

was obtained from the instructor. A typical item is “Design

inner classes that implement event handling interfaces.”

The  after-COMPS-lab  survey  had  items  covering

student perceptions in three areas: student interest, whether

the student learned from the lab, and how well the group

exercise functioned. An example item is “I contributed to

the understanding of other students in my group.”

Results

Survey Results

Table 3 shows the students' perceptions of interest and effi-

cacy at the beginning and end of the semester. All interest

items were combined into one mean and the same for all

efficacy items. In total 28 students participated in both pre-

and post-surveys.

• Regarding students’ interest toward the course, 

their interest did not change. The averages of stu-

Jung Hee Kim et al. MAICS 2016 pp. 69–74

71



dents’ interest toward the course in the beginning 

of the semester and end of the semester were 4.33 

and 4.32 respectively.

• Self-efficacy with respect to the course content in-

dicated significant improvement between the be-

ginning and the end of the semester, rising from 

2.83 to 3.81.

The increase in self efficacy was significant, p < 0.01.

Table  4  shows  students'  perception  of  the  COMPS

labs, surveyed immediately after each lab. There seemed to

be  a  clear  improvement  between  the  first  part  of  the

semester (Labs 1 and 2) and the later part (Labs 3 and 4).

Students perceived:

• more  effective  group  work  in  the  second  part

(means rose from about 3.1 to about 3.4) 

• better  understanding  of  concepts  in  the  second

half (means rose from about 3.4 to about 3.9).

Multiple  one-way  ANOVA supports  the  hypothesis

that  mean scores  are indeed different,  p = 0.03 for  both

effectiveness  and understanding.  Post hoc analyses  using

the  Tukey  test  for  significance  indicated  that  the  mean

scores of Lab 3 were significantly higher than Lab 2 for

both effectiveness and understanding.

However, students’ interest in each exercise in the lab

sessions seemed to fluctuate throughout the semester. Lab

3 had  the  highest  interest,  which  corresponded  with  the

highest  effectiveness  and  understanding.  But  interest  in

Lab 4 was the approximately the same as Labs 1 and 2.  

Affective States by Gender

We annotated the 14 group discussions of one COMPS ex-

ercise, comprising 2147 dialogue turns, for the six affective

features. In total 199 turns showed evidence of one or more

feature, or 9.3%. 

As a first test of the utility of these features along with

the machine-generated ones, we tried to use them to predict

the gender of the participant. Among 49 students we had

16 women and 33 men. First we aggregated all the turns

from  each  student,  and  looked  at  statistical  differences

between  the  two populations.  Two-tailed  t-tests  revealed

that  none  of  the  features  were  significantly  different

between  the  genders  at  the  p  <  0.05  level.  However

expressions of apology were different at the p = 0.06 level.

The most common affective feature was confusion, with 62

instances  of  utterances  expressing  confusion.  Women

expressed confusion in 4.6% of turns, and men in 2.2%. It

suggests the two genders  behave differently, but the p <

0.22 level  does  not  show significance.  The two genders

also  showed  differences  in  the  amount  of  participation.

Men each uttered an average of 46 turns per dialogue and

women 36 turns.

We then  trained a  J48 decision tree  classifier  and a

multiple-regression  linear  classifier  using  the  Weka  data

mining  tool  (Witten  and  Frank,  2005).  The  task  is  to

classify each dialogue turn with the gender of the speaker,

to mimic the task of monitoring a conversation in real time

turn-by-turn.  These  classifiers  have  not  been  successful.

The  same  features  that  are  statistically  correlated  with

gender are discovered by the decision trees, but accuracy

has been quite low.

Discussion and Future work

Survey Results

The students experienced improvement in their experience

of  the  COMPS  exercises  during  the  semester.  They  re-

ported that the groups worked better in the last two exer-

cises and that they learned more. It is not clear why student

interest was lower in the last lab. Anecdotally there are two

reasons that have been suggested by the instructor and lab

TAs who supervised this session. One is that the last lab

was optional,  presented  during Thanksgiving week.  That

fewer  students  attended  could  indicate  that  the  general

level of engagement was lower than usual. The other is that

perhaps the novelty was wearing off.  Some students ex-

pressed as much during the session. We will need to find

some way to survey the reasons for student interest.

The pre- and post-semester survey is hard to interpret

because of low participation rate and dropouts. In the next

semester  we  are  enforcing  better  participation.  The

increase in self-efficacy was striking, but we do not have

yet  any  comparison  with  other  classes.  Future  work

includes comparing interest and self-efficacy with learning

gains on the pre- and post-tests. Future work also includes

comparing  pre-  and  post-semester  survey  results  with

individual lab surveys, to see whether there are correlations

between overall student interest and the situational interest

in individual COMPS exercises.

Another  analysis  in  the  future  will  be  between  the

participants  of  the  same  group:  do  they  agree  about

learning  and  group  functioning,  do  they  have  similar

learning gains.

Affective States in Dialogue

Hand-annotating the remaining 6000 turns of dialogue may

result in more reliable statistical correlations. We are also

at work toward machine-annotation of these features.

Annotation  of  the  affective  states  so  far  has  relied

entirely  on  the  text  of  the  dialogues.  Future  work  will

include  extra-linguistic  features.  In  COMPS  group

exercises in other classes evidence of student engagement

sometimes presents through Comic Sans typeface,  big or

bold fonts, and wild colors.  We are also exploring using

timing features from the overlapped typing. Students can

all  type  simultaneously  while  seeing  each  other's

developing  chat  text  (Glass  et  al.,  2015).  We think  that

typing speed, degree of simultaneous typing, and pauses as

they look at each other's turns, may provide indications of
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affective  states  such  as  being  excited  or  indications  of

when they are attending to each other's utterances.
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Table 1: Example of Dialogue Transcript with Affective Features

Turn Student Time Dialogue turn Affective State

1 A 06:44.2 f and foo are the refernece variables

2 A 07:05.2 so those together make 16? for the refrence types

3 B 07:11.9 yup yup

4 A 07:27.9 16 bytes

5 C 07:30.2 2a = 20

6 C 07:36.0 :D Excited

7 B 07:39.7 there ya go lol Humor

8 D 07:54.9 Wait where did you get 16? Confused

9 D 08:05.8 wouldnt it be 48 at least for the main method

10 D 08:18.3 because the array creates 5 object

11 A 08:26.1 oh yeah i looked over that was just counting m f and foo Apologetic

12 C 08:28.7 those are on the heap not the stack

13 D 08:48.0 So the objects created by an array are on the heap

14 A 09:13.8 yeah run time stack = 48

Table 2: Example of Feature words

Excited Apologetic Confused Frustrated Sad

:D sorry i'm confused D:< :(

yay my bad how ):< ):

yes! nvm why This is hard I feel stupid

!!! whoops what is

cool! i messed up I don't under-

stand

Table 3: Beginning and end of semester surveys

Time Interest Efficacy

beginning of sem. 4.33 / 5 2.83 / 5 

ending of sem. 4.32 / 5 3.81 / 5

Table 4: After lab surveys

Effectiveness of group work

Mean / SD

Understanding of concept

Mean / SD

Interest in lab 

Mean /SD

Lab1 3.17 0.68 3.45 0.96 3.19 0.94

Lab2 3.08 0.93 3.42 1.05 3.08 0.93

Lab3 3.47  0.71 4.03 1.06 3.65 0.76

Lab4 3.40 0.61 3.78 0.85 3.17 0.89
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