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Abstract

In order to integrate a wide variety of
databases or many diverse sources of infor-
mation, we need the ability to learn the sim-
ilarities directly from instances of the data,
which may be embodied within a database
model, a conceptual schema, application pro-
grams, or data contents. The process of de-
termining semantically equivalent data items
can not be "pre-programmed" since the infor-
mation to be accessed is heterogeneous. In-
telligent information integration involves ex-
tracting semantics, expressing them as meta-
data, and matching semantically equivalent
data elements. Semint (SEMantic INTegra-
tor) is a system prototype for semantic inte-
gration being developed at Northwestern Uni-
versity. It provides a graphical user interface
and supports access to a variety of database
systems and utilizes both schema informa-
tion and data contents to determine attribute
equivalence. In Semint, the knowledge of how
to match equivalent data elements is "discov-
ered", not "pre-programmed".

Introduction

Applications in a wide variety of industries require ac-

cess to multiple heterogeneous distributed databases.

One reason is that enterprises have various kinds of
databases due to company merge or due to introduc-

tion of new database technology. Another reason is

because of the increasing need for integration of infor-

mation.

In semantic integration, attributes (classes of data

items) are compared in a pairwise fashion to determine
their equivalence. Identifying semantically related ob-
jects and then resolving the schematic differences is

tThis material is based upon work supported by the Na-
tional Science Foundation under Grant No. CCR-9210704.

the fundamental question in any approach to database

system interoperability.

The number of database integrated may be from few

databases (can be integrated to a single, tightly inte-

grated system) to thousands of databases (e.g. 

West [Drew et al., 1993] or information available on

Internet). Manually comparing all possible pairs of at-
tributes is an unreasonably large task. [Goh et al.,

1994] argues existing integration strategies might pro-

vide satisfactory support for small or static systems,

but not for large-scale interoperable database systems

operating in a dynamic environment. US West reports

having 5 terabytes of data managed by 1,000 systems,
with customer information alone spread across 200 dif-

ferent databases [Drew et al., 1993]. One group at

GTE began the integration process with 27,000 data
elements, from just 40 of its applications. It required

an average of four hours per data element to extract

and document matching elements when the task was

performed by someone other than the data owner [Ven-

trone and Heiler, 1994]. Other GTE integration efforts

have found the elements overlapped or nearly matched

in their database to be close to 80% [Ventrone and

Heiler, 1994].

Existing techniques concentrate either on interac-

tive support for manual semantic integration as part

of automated or on comparing attribute names to au-

tomatically determine similar attributes. In the lat-

ter approach, the names of attributes are compared

to determine similar attributes. Problems occur with

synonyms (objects with different names that represent
the same concepts); these are handled using a (man-

ually created) "synonym table". Another problem is
homonyms: Names are the same but different concepts
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Figure 1: Overview of Semantic Integration Procedure in Semint

are represented. From GM’s efforts in integration [Pre-

merlani and Blaha, 1994], attribute names were not

sufficient for semantic integration; only a few obvious

matches were found. However, similarities in schema
information were found to be useful. For example,

it was discovered in one case that attributes of type

char(14) were equivalent to those of char(15) (with an

appended blank). Semint contains two novel aspects
in data integration:

1. Information on the schema and data contents, rather
than attribute names, is used to determine attribute

similarity (note that this is compatible with name-

based semantic integration techniques; a production

system would probably use both).

2. The means of determining similarity (in other words,

how the information is used to determine similarity)

is learned on a per-database basis, rather than pre-
programmed.

This paper will discuss how Semint extracts informa-

tion from a database and learns how to determine at-
tribute similarity directly from that information. We

will first give some technical details of Semint, then
discuss some possible extensions.

System Architecture

Semint [Li and Clifton, 1995] is a system prototype for
semantic integration being developed at Northwestern

University. It can operate in a graphical interactive

mode (allowing users to provide known information
about the semantic integration problem at hand), or

automatically. It is implemented using C and Motif,

and runs on IBM RS6000s under AIX and Sun work-
stations under Sun OS. Databases to be integrated are

accessed directly using automatic "catalog parsers".

Figure 1 outlines the semantic integration process in
Semint. In this process, DBMS specific parsers extract

information (schema and data content statistics) from
databases and transform them into a single format (so

these information can be compared). Then, a classifier

is used to learns how to discriminate among attributes

in a single database. The classifier output, the weights

of cluster centers, is used to train a neural network to
recognize categories; this network can then determine

similar attributes between databases.

DBMS Specific Parser

I Run I
C .... 1I

Figure 2: Parser Window in Semint

In Semint, users only need to specify the DBMS type

(currently we are testing Oracle, Ingres, and "flat file"
parsers; other parsers will be developed as resources

allow). The user then needs to supply DBMS-specific

connection information for the desired database. In

Oracle7, user id, user password, and table owner id
are necessary. The Oracle7 parser window in Semint

is shown in Figure 2. DBMS specific parsers are im-

plemented using SQL embedded C (e.g. Pro*C in

Oracle7). Although different DBMS’s use different

data dictionaries to contain schema information and

integrity constraints, these DBMS specific parsers are
similar. Semint automatically extracts schema infor-

mation and constraints from the database catalogs and
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Search Pattern. ~I ]

b~4~.odate 0.~ 0.0~000 1.000000 0.00~000 0.363784 O.CqO000 0.0~0 0.~"/~3
bpp.s~,bo] 1.00(1000 0.04)0000 0.0000~0 0.0000(0) 0.2338ro(; 0.000000 0.~ 1.0000
b~o.~tzm’e 0.0(0000 0.000000 1.0~04~00JX)O0(O) 0.188344 0.~0 0.~ 0.3~5
b~.otme O,O(X)O~ O.O~(X)O0 0.000000 1.04~000 0,188344 0.000000 0.000000 0.47154
~.exr.$w’c 0.000000 1.0~000 0.000000 O.O(X)O00 0.~8384 0.400000 0.0~0 0.503
bp1~.voluM O.O04)(X)O 1.000000 0.~0000 O.O000(OI 0.2~ 0.~ 0.0~0 0.~I01
b~.optn_p~ 0.000000 1.000000 0,000000 0.000000 0.321738 0.400000 0.000000 0.50
bpp,spot_bld 0.000000 1.000000 0.000000 0.0(~000 0.~4 0.400000 0.~00~ 0.50
bpp.~pot_ask 0.000000 1.000000 0.000000 0.000000 0.~3184 0.400000 0.000000 0.50

Loaded 1129 b~tes from IfL]es21~ure./~int,/bpp.

Figure 3: Parser Output

statistics on the data contents using queries over the

data. It may take few hours to scan through a ta-

ble with several million rows of data. However, only a

small portion of sample data is needed (e.g. picked 

row out of 10, not first 10% of the rows) to compute

statistics on the data contents. The size of a table can
be found in the catalog, then we decide the percentage

of rows we want to sample. The information extracted

from different databases is then transformed into a sin-

gle format and normalized (see ill and Clifton, 1994]

for details). The parser output is shown in Figure 3.

Schema Information The schema information used

by Semint includes data types, length, scale, precision,

and the existence of constraints (primary keys, foreign
keys, candidate keys, value and range constraints, dis-

allowing null values, and access restrictions). The sam-

ple SQL queries (in Oracle7 Pro*C) extracting schema
information and constraints from Oracle7 databases

are shown in Figure 4. In some cases (such as flat-file

data) we may not have an accessible schema definition.

Many of the above characteristics can be determined

by inspecting the data. This need not be a manual
process, commercial tools are available that can au-

tomatically extract schema information from flat files.

Data Content Statistics The data contents of dif-

ferent attributes tend to be different even though their

schema designs may be the same. This shows up in

their data patterns, value distributions, grouping or

other characteristics. These can serve to "character-
ize" attributes. For example, "SSN" and "Account

balance" can all be designed as nine-digit numerical

fields; they may not be distinguishable based solely on

SELECT a.TABLE’NAME, a.COLUMN’NAME, a.DATA’TYPE,
a.DATA’LENGTH, a.NULLABLE, a.DATA’SCALE,
a.DATA’PRECISION, a.DATA’DEFAULT,
a.NUMBER’DISTINCT

FROM USER’TAB’COLUMNS a, ALL’TAB’COLUMNS b
WHERE a.TABLE’NAME=b.TABLE’NAME

AND a.COLUMN’NAME=b.COLUMN’NAME
AND b.OWNER=:owner’id;

SELECT DISTINCT CONSTRAINT’TYPE
FROM USER’CONSTRAINTS a, USER’CONS’COLUMNS b
WHERE a.CONSTRAINT’NAME= b.CONSTRAINT’NAME

AND b.TABLE’NAME= :t able’name;
AND b.COLUMN’NAME= :column’name;

Figure 4: SQL extracting schema and constraints

SELECT AVG(:column’name), MAX(:column’name),
MIN(:column’name),STDDEV(:column’name),
VARIANCE(:column’name)

FROM :table’name;

SELECT AVG(VSIZE(:column’name)),
MAX(VSIZE(:column’name)),
MIN(VSIZE(:column’name)),
STDDEV(VSIZE(:column’name)),
VARIANCE(VSIZE( :column "name))

FROM :table’name;

Figure 5: SQL Extracting Data Content Statistics

their schema characteristics. However, their data pat-

terns such as value distributions, and averages are all

different. Thus, examining data contents can correct

or enhance the accuracy of the outcomes from the dic-
tionary level and the schema level. In [Li and Clifton,

1993] we utilize schema information to identify match-

ing attributes. [Li and Clifton, 1994] includes statistics

on data contents to determine attribute similarity. The

statistics on data contents used in Semint include max-

imum, minimum, average (mean), variance, coefficient

of variance, existence of null values, existence of deci-
mals, scale, precision, ratio of the number of numerical

characters to the total number of characters, ratio of

white-space characters to total characters, grouping,

and number of segments. For numerical fields, we use
their values to compute statistics. For character fields,

whose values are not computable, we compute statis-

tics on numbers of bytes actually used to store data

(it is meaningless to compute statistics on ASCII code
numbers). The sample SQL queries extracting data

content statistics from Oracle7 databases for character

and numerical fields are shown in Figure 5:

Data Type Conversion The internal data types

used in Oracle7 are Char, Long, Varehar, Number,

Date, Raw, Long raw, Mlslabel (binary format of an
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operating system label), and Rowid. We categorize

Raw and Long raw, and Char, Long, and Varchar into

one group respectively since their length can separate

them from each other. We use internal data types to

match fields within sample DBMS. To match fields in

different DBMS’s, we use external data types. Nor-

mally a DBMS has more external data types than in-
ternal data types. For example, there are 9 internal

and 21 external data types in Oracle7. Oracle7 has

only one internal numerical data type - Number, but

it has Real, Integer, and other external numerical data

types. Simply considering scale and precision of a nu-

merical field, we can convert a Number internal data
type into Real, Integer, or other external numerical

data types in order to match fields in other DBMS.

"Behavior semantics" such as use of cross reference,
view, cluster, sequence, synonym, and dependence can

also be extracted from system data dictionary. We

are currently incorporating these "behavior semantics"

into our Oracle7 parser.

Classifier

The available information from an individual database

discussed above is used as input data for a classi-

fier to categorize attributes within a single DBMS.

Semint uses the self-organizing map algorithm, an un-

supervised learning algorithm, as the classifier. We
have adapted this algorithm so that users can deter-

mining how fine these categories are by setting the ra-

dius of clusters (threshold). A window dump of classi-
fier is shown in Figure 6. The classifier output is shown

in Figure 7.

Do want to classifier?you run

Parameters For classification process:

Input File; /Files2/acura/~emint/bpp

Output File; /Files2/acura/semint/bppocFr

Threshold: 0°050000

II Run II cooooll
Figure 6: Classifier Window

File S~arcb

Search Pattern’-II I
N,.~er’.oF.cl~f~re t 8
Numbev.oF_di~oriNinator$: 12

Cluster O: 1 £1eld
Field naMi bpp.odate
61el@ts: 0o000000 0.~0000 ioO00000 0.000000 0.~784 0.0000¢0 0o000000 0.575533
Clu~t~r l: I Field
Field n~e: ~.$y~ol

Loaded 141B l~t~$ From /filos2/acuPa/$emlnt/bpp.ofr.

Figure 7: Classifier Output

you want to train netowrk?~o the

Parameters For tralnin9 procas$$

Tralnin9 al9orlthm~ Standard BackPropa9ation Algorithm¥
Input File (tratnin9 data): /Flles2/acura/semint/bpp.cFr
Output File (wettrains): /Ftles2/acura/semint/bpp.net

Threshold: 0.050000

Homantum: 0°500000

Learnin9 rate: 0.900000

Canoelj

Figure 8: Training Window

Training Networks

The output of the classifier is then used as train-

ing data for a back-propagation network, a supervised

learning algorithm. The "supervision" is that target

results are provided; however as these target results

are the output of the classifier, no user supervision is

needed. We use this as a training algorithm to train
a network to recognize input patterns and give de-

grees of similarity. We have implemented two versions

of back-propagation algorithms, standard and quick-

propagation. For details of the training algorithms,
please see [Li and Clifton, 1994]. The window dump

for training is shown in Figure 8.

Using Networks

In order to determine similarity between two

databases, users take the network trained for one

database (e.g. database A), and use information ex-

tracted from the other database (e.g. database B) 

input to this network. The network then gives the
similarity between each pair of attributes in the two
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Figure 9: Overview of Semantic Integration Procedure in Semint

t 9o0 want to slnilarlt97Do doterMine

Paramters foe similarity dotersination process:

Trsinad net~rk (weights): /files2/aoJra/ssmint/bpp.net

Input file: Ifiles21aare/s~int/bpo

Foeei~ ke9 file t None

Output file: /filos2/acura/ssmint/bpp,si~

List pairs whose similarit9 9rsster than (thr~hold): 0,~)0000 up to 10 pairs

Cancel l

Figure 10: Similarity Determination Window

File $..eerch

Search Pattern: II I
/file*2/~ura/stmlnt/b~,cfr is classified from Ifllos2/act#ra/s~tntlbpp ulth th

$1milarlty betaee~ b~.mattra of /filos2/act#redmmint/b~ and fields of /files2/
O.~aOSt_6: b~.Mttra
Simil~it9 bett~m b~,ott~e of /file~2/~ura/s~int/b~ and fields of /ftles2/a
0.97~19: bpp,otim
Simliaeit9 bet~oa bpc.exr_prc of /files2/actra/se~int/b~ ~ fields of /files2
0.K~?872: hof.exr.prc
5imll~it9 between b~.voltm oF /ftles2/acuea/stmint/bpc acxJ fields oF /files2/a

Loaded 1408 b,.jt, e= from /files2/actra/semint/l~.sim.

Figure 11: Similarity Output

databases. System users check and confirm the out-

put results of the trained network. This process is

shown in Figure 9. A window dump of similarity de-

termination and its output are shown in Figures 10

and 11. The output results include lists of similar at-

tributes and the similarity between them. Note the

only human input is to specify DBMS types and IP

addresses for remote machines and to examine and con-

firm the output results (similar pairs of attributes and

the similarity between them). Other processes can be
fully automated. Given DBMS types, user id, pass-

word, database owner id, and machine IP addresses.

Semint will automatically extract schema information

from DBMS, analyze data contents to generate statis-
tics, transform database information into a single for-

mat, build and train neural networks, and then use
trained neural networks to identify similar attributes

and determine their similarity. The source code of cur-

rent system is available through anonymous FTP from

eecs.nwu.edu in/pub/semint.

Domain Knowledge and Detecting

Heterogeneity

Some data items, such as first names, last name, city,

date, and time, frequently exist in databases. Us-

ing specialized functions with domain knowledge can

identify these data items independently. For example,

when we examine a data item "departure", its field

name only tells us this data item is related to "depar-
ture". We then find some city names in this field, say,

"Chicago" or "ORD", we may conclude "departure"

records departure city, not departure date or time. On

the other hand, if we find the contents in this field are
dates, we may come up a different conclusion - "de-

parture" records departure date, not departure city.

Also, if we find some first names such as "John" exist-
ing in two fields, we may conclude these two fields are

"first name" even if their field names are not assigned

with meaningful names and their schema is designed

differently, say, Char(10) and Varchar(20). Integra-

tion knowledge base is not necessarily something that

generalizes, so learning in a specific domain knowledge

base (e.g. a domain knowledge base for finance related

databases) can be quick, easy, and less expensive to

build (as opposed to trying to come up with a mono-

lithic procedure that works for all cases).
Problems of heterogeneity are pointed out by
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[Wiederhold, 1993] such as representation, scale, and

level of abstraction. [Sciore et al., 1994] shows how
semantic values can be either be stored explicitly or

be defined by environments using conversion func-

tions (e.g. 4(LengthUnit=’feet’) and ~8(LengthU-
nit--’inches’)). Heterogeneity can be "resolved" be-

cause there exists conversion between them. Thus, het-
erogeneous databases can be accessed using an exten-

sion of SQL, called Context-SQL. However, the main

problem of overcoming the challenges of large-scale

interoperable database systems, finding similar data

items, remains since conversion functions need to be
defined manually and standardized.

We are combining the similarity determined in all

levels to identify types of heterogeneity. If we com-

pare two fields which are semantically equivalent but

use different units. We may come out a result that
their names are similar in the dictionary level, their

data types are the same but length is different in the

schema level, and their average values are different but

their CV’s are similar in data content level. We may

conclude there exists scale heterogeneity (e.g. one at-

tribute uses "pound" while another uses "kg").

Conclusion

A number of federated database system prototypes

have been or being developed. These systems focus

on query processing and transaction management as-

suming heterogeneity has been identified and resolved

so that global queries can be decomposed into local

queries. In these systems, identifying heterogeneity

needs to be done manually and equivalence relationship
maps are specified by "user-defined functions". Semint

can be used to identify heterogeneity and build equiva-

lence relationship maps (output results of similarity de-

termination process from Semint) for these systems as
a pre-processor. [Wiederhold, 1993] states important

issues in intelligent integration of information include
metadata representation and how to match users’ spec-

ifications with huge amount of available resources. In

this paper we give the process of knowledge extracting

and matching in Semint. We argue trying to come up

with a general framework for dealing with heterogene-

ity will probably fail, but learning techniques enable

us to come up with specific frameworks for localized

problem domains without a great deal of human in-

volvement. Efforts in building domain knowledge bases
to identify frequently appearing data items such as

names, address, SSN, company names, and airports,

will be compatible with and support current techniques

in identifying semantically related data items.
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