@inproceedings{spinoso-di-piano-etal-2025-rsa,
title = "({RSA}){\texttwosuperior}: A Rhetorical-Strategy-Aware Rational Speech Act Framework for Figurative Language Understanding",
author = "Spinoso-Di Piano, Cesare and
Austin, David Eric and
Piantanida, Pablo and
Cheung, Jackie CK",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-long.1019/",
doi = "10.18653/v1/2025.acl-long.1019",
pages = "20898--20938",
ISBN = "979-8-89176-251-0",
abstract = "Figurative language (e.g., irony, hyperbole, understatement) is ubiquitous in human communication, resulting in utterances where the literal and the intended meanings do not match. The Rational Speech Act (RSA) framework, which explicitly models speaker intentions, is the most widespread theory of probabilistic pragmatics, but existing implementations are either unable to account for figurative expressions or require modeling the implicit motivations for using figurative language (e.g., to express joy or annoyance) in a setting-specific way. In this paper, we introduce the Rhetorical-Strategy-Aware RSA (RSA){\texttwosuperior} framework which models figurative language use by considering a speaker{'}s employed rhetorical strategy. We show that (RSA){\texttwosuperior} enables human-compatible interpretations of non-literal utterances without modeling a speaker{'}s motivations for being non-literal. Combined with LLMs, it achieves state-of-the-art performance on the ironic split of PragMega+, a new irony interpretation dataset introduced in this study."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="spinoso-di-piano-etal-2025-rsa">
<titleInfo>
<title>(RSA)²: A Rhetorical-Strategy-Aware Rational Speech Act Framework for Figurative Language Understanding</title>
</titleInfo>
<name type="personal">
<namePart type="given">Cesare</namePart>
<namePart type="family">Spinoso-Di Piano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="given">Eric</namePart>
<namePart type="family">Austin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pablo</namePart>
<namePart type="family">Piantanida</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jackie</namePart>
<namePart type="given">CK</namePart>
<namePart type="family">Cheung</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-251-0</identifier>
</relatedItem>
<abstract>Figurative language (e.g., irony, hyperbole, understatement) is ubiquitous in human communication, resulting in utterances where the literal and the intended meanings do not match. The Rational Speech Act (RSA) framework, which explicitly models speaker intentions, is the most widespread theory of probabilistic pragmatics, but existing implementations are either unable to account for figurative expressions or require modeling the implicit motivations for using figurative language (e.g., to express joy or annoyance) in a setting-specific way. In this paper, we introduce the Rhetorical-Strategy-Aware RSA (RSA)² framework which models figurative language use by considering a speaker’s employed rhetorical strategy. We show that (RSA)² enables human-compatible interpretations of non-literal utterances without modeling a speaker’s motivations for being non-literal. Combined with LLMs, it achieves state-of-the-art performance on the ironic split of PragMega+, a new irony interpretation dataset introduced in this study.</abstract>
<identifier type="citekey">spinoso-di-piano-etal-2025-rsa</identifier>
<identifier type="doi">10.18653/v1/2025.acl-long.1019</identifier>
<location>
<url>https://aclanthology.org/2025.acl-long.1019/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>20898</start>
<end>20938</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T (RSA)²: A Rhetorical-Strategy-Aware Rational Speech Act Framework for Figurative Language Understanding
%A Spinoso-Di Piano, Cesare
%A Austin, David Eric
%A Piantanida, Pablo
%A Cheung, Jackie CK
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-251-0
%F spinoso-di-piano-etal-2025-rsa
%X Figurative language (e.g., irony, hyperbole, understatement) is ubiquitous in human communication, resulting in utterances where the literal and the intended meanings do not match. The Rational Speech Act (RSA) framework, which explicitly models speaker intentions, is the most widespread theory of probabilistic pragmatics, but existing implementations are either unable to account for figurative expressions or require modeling the implicit motivations for using figurative language (e.g., to express joy or annoyance) in a setting-specific way. In this paper, we introduce the Rhetorical-Strategy-Aware RSA (RSA)² framework which models figurative language use by considering a speaker’s employed rhetorical strategy. We show that (RSA)² enables human-compatible interpretations of non-literal utterances without modeling a speaker’s motivations for being non-literal. Combined with LLMs, it achieves state-of-the-art performance on the ironic split of PragMega+, a new irony interpretation dataset introduced in this study.
%R 10.18653/v1/2025.acl-long.1019
%U https://aclanthology.org/2025.acl-long.1019/
%U https://doi.org/10.18653/v1/2025.acl-long.1019
%P 20898-20938
Markdown (Informal)
[(RSA)²: A Rhetorical-Strategy-Aware Rational Speech Act Framework for Figurative Language Understanding](https://aclanthology.org/2025.acl-long.1019/) (Spinoso-Di Piano et al., ACL 2025)
ACL