
International Journal of Parallel Programming (2019) 47:1014–1044
https://doi.org/10.1007/s10766-019-00637-y

Adaptive Thread Scheduling in Chip Multiprocessors

Ismail Akturk1 ·Ozcan Ozturk2

Received: 27 March 2015 / Accepted: 7 May 2019 / Published online: 14 May 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
The full potential of chip multiprocessors remains unexploited due to architecture
oblivious thread schedulers employed in operating systems. We introduce an adaptive
cache-hierarchy-aware scheduler that tries to schedule threads in a way that inter-
thread contention is minimized. A novel multi-metric scoring scheme is used which
specifies L1 cache access characteristics of threads. Scheduling decisions are made
based on these multi-metric scores of threads.

Keywords Adaptive scheduling · Chip multiprocessors · Inter-thread contention ·
Multi-metric scoring

1 Introduction

The number of transistors on a die no longer increases according to Moore’s Law [1]
due to power constraints and diminishing returns. However, the demand for increased
performance and higher throughput is still in place. To provide higher throughput and
increased performance without bumping into physical limits of Moore’s Law, novel
multiprocessor architectures have emerged, including chip multiprocessors that con-
tain multiple cores on a single chip [2]. Another way to provide higher throughput and
increased performance is to run more than one thread on each core with multithread-
ing, namely simultaneous multithreading [3]. The choice of threads to be scheduled
on the same core has significant impact on overall system performance. Inter-thread
contention occurs since coscheduled threads are competing for shared resources. The
primary shared resource that influence the ultimate performance is cache. An efficient

B Ismail Akturk
akturki@missouri.edu

Ozcan Ozturk
ozturk@cs.bilkent.edu.tr

1 Department of Electrical Engineering and Computer Science, University of Missouri, Columbia,
MO, USA

2 Department of Computer Engineering, Bilkent University, Ankara, Turkey

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-019-00637-y&domain=pdf

International Journal of Parallel Programming (2019) 47:1014–1044 1015

scheduling should minimize the contention on caches to maximize utilization and
system performance. Since the execution characteristics of threads varies over time,
scheduling decisions should be adapted based on provisioned behaviors of threads for
the near future.

In this work, we particularly focus on thread scheduling and introduce an adaptive
cache-hierarchy-aware scheduling algorithm for chip multiprocessors. The proposed
algorithm uses hardware counters that allow us to identify cache access pattern of
each thread. It implements an intelligent scheduling decision mechanism that tries to
schedule threads in a way that inter-thread contention is minimized. The originality
of this work is the use of multi-metric scoring scheme that is calculated based on
L1 cache access characteristics of a thread. Then, multi-metric scores of threads are
used in scheduling decisions. While previous studies are focused on the performance
of last-level cache (LLC) to optimize scheduling decisions, our evaluations indicate
that eventual performance of LLC is dependent on how the upper levels of cache
hierarchy are utilized. Thus, adaptive cache-hierarchy-aware scheduling effectively
increases the utilization of upper levels of cache, and thereby improves the throughput
and maximizes the system performance.

The organization of the paper is as follows. In Sect. 2, we provide background on
thread scheduling.Wediscussmulti-metric scoring scheme in Sect. 3 and introduce our
proposed adaptive cache-hierarchy-aware scheduling algorithm in Sect. 4.We provide
experimental results in Sect. 5. We discuss the related work on thread scheduling
in Sect. 6, including cache replacement, partitioning algorithms, and coscheduling
methods. Finally, we conclude and provide future work in Sect. 7.

2 Background

Typical workloads running on chip multiprocessors are composed of multiple threads.
These threadsmay exhibit different execution characteristics. In other words, theymay
run in different phases (e.g., memory phase, compute phase). Besides different threads,
even execution characteristics of a particular thread may change over time. When
threads are scheduled together that are running in phases that exacerbates contention
for shared resources, the system performance decreases and throughput reduces due to
conflicts. On the other hand, when threads running in cooperative phases are scheduled
together, the contention for shared resources is diminished that yields to better resource
utilization, higher throughput, and improved system performance.

The choice of threads to be scheduled on the same core has significant impact on
overall system performance. Inter-thread contention occurs since coscheduled threads
are competing for shared resources. The primary shared resource that influence the
performance is the cache. An efficient scheduling should minimize the contention for
shared caches to maximize utilization and system performance. Since the execution
characteristics of threads varies over time, the scheduling decision has to be remade
based on provisioned behaviors of threads for the near future.

Other shared resources include functional units, instruction queues, memory, inter-
connections between resources, the translation look-aside buffer (TLB), renaming
registers, and branch prediction tables.While threads share these resources to improve

123

1016 International Journal of Parallel Programming (2019) 47:1014–1044

utilization, they also compete for these resources that may reduce efficiency. Our focus
in this work is on scheduling of threads based on interactions on shared caches.

From the operating system point of view, scheduling decisions have to be made
based on the measures that affect the performance the most. Thus, we make a detailed
survey on possible measures and evaluate their effects on performance. We observe
that, contrary to the common thought, L1 cache access pattern of threads has a great
impact on performance. To elaborate, we focused on L1 cache access patterns of
threads and formulate a score for each thread that reflects execution characteristics of
threads. The score of a thread specifies the intensity to compete for shared resources,
or namely the friendliness of the thread. A thread that uses decent shared cache tends to
be friendly, namely it causes less degradation to its co-runners, and it suffers less from
its co-runners. Although the notion of friendliness is widely used in recent studies;
we observed that they consider just a particular metric to determine friendliness, such
as IPC of each thread or miss ratio. Such metrics are well indicators for particular
cases; however, they become insufficient for general cases where a larger diversity
is expected. Due to lack of adequate measure of friendliness, we developed a multi-
metric scoring scheme to specify the execution characteristics of threads and make
scheduling decisions on this multi-metric score.

2.1 Problem Statement

The conflicts among threads are difficult to predict due to their unrepeatable nature [4].
The behavior of a thread changes over time. For example, a threadmay have highmem-
ory demands during the initialization and data loading, and following that it may have
high CPU demand while processing loaded data. Loading and processing may occur
several times that eventually changes behavior of a thread over time. In such cases,
static scheduling schemes are likely to fail on minimizing conflicts among threads.

An intuitive scheduling would be to group memory intensive threads with threads
that are non-memory intensive. However, it is not always possible to find such pairs
(e.g., all threads may be memory intensive in a particular time). Also, threads may
be memory intensive; however, their memory access pattern may change drastically
that affects the overall performance. For example, streaming threads may generate
more memory requests; however, they do not get any benefit from cache hierarchy,
since they have limited (or no) locality. Also, streaming behavior of such threads are
detrimental to other threads which are memory intensive. They evict the cache lines
of other threads without gaining any benefit in return.

Figures 1 and 2 show the variances in L2 miss ratio and instruction per cycle (i.e.,
IPC) of threads under different scheduling schemes, respectively. Note that, there are
four benchmarks running on two cores where two threads share a private L1 cache
and all threads share a unified L2 cache as LLC.

Existing schedulers used in operating systems are unaware of multi-level cache
hierarchies and access/sharing pattern of threads running on chip multiprocessors.
For this reason, traditional schedulers are oblivious to the access patterns of threads
and they may schedule threads in a way that their memory accesses contradict with
each other. This, in turn, hurts the cache performance leading to high miss ratios, high

123

International Journal of Parallel Programming (2019) 47:1014–1044 1017

Core 0 Core 1 Core 0 Core 1 Core 0 Core 1

fluidanimate facesim canneal blackscholes

L2
 m

is
s

ra
te

0.00

0.02

0.04

0.06

0.08

0.10

0.12

schedule 1 schedule 2 schedule 3

Fig. 1 The L2 miss variation of four threads running on two cores under different scheduling schemes

Core 0 Core 1 Core 0 Core 1 Core 0 Core 1

fluidanimate facesim canneal blackscholes

schedule 1 schedule 2 schedule 3

IP
C

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 2 The IPC variation of four threads running on two cores under different scheduling schemes

number of evictions and longer time to serve memory requests since data has to be
brought from lower levels of memory hierarchy.

In addition, the use of profiling provided by compiler-directed approaches can not
exploit the full potential of chip multiprocessors, since such profiling may not reflect
the dynamically changing inputs and execution characteristics of threads. Similarly,
schedulers used in simultaneousmultithreadedprocessors try to schedule threads based
on each thread’s expected resource utilization to maximize, but do not consider vari-
ances and changes in thread execution characteristics over time.

Scheduling of threads has to be made based on the measures that affect the perfor-
mance themost. As a primary shared resource, caches and their performancemeasures
are critical. There is a large body of work that characterize the last-level cache (LLC)
performance. The limitation of these studies are that they are oblivious to perfor-
mance of higher level caches. Notice that the number of LLC accesses is a function
of misses occurred in higher level caches. For this reason, we claim that to minimize
LLC accesses and probability of LLC misses, we have to minimize the cache misses
in higher levels of cache. In order to do this, the thread scheduling decisions have to
be made by considering higher levels of cache performance.

Based on these observations, we conclude that, cache-hierarchy-aware scheduling
for chipmultiprocessors,which adopts dynamically changing execution characteristics
of threads, is inevitable.

123

1018 International Journal of Parallel Programming (2019) 47:1014–1044

2.2 Motivation

Numerous research efforts have beenmade onminimizing cache conflicts and capacity
misses of shared LLC (in most cases L2) for both multiprocessors and chip multi-
processors. Although such efforts are effective (i.e., minimizing cache conflicts and
capacity misses of LLC), they ignore the effects of higher levels of cache hierarchy
on eventual LLC performance. Typically, each core has L1 that is shared by multi-
ple threads in chip multiprocessors. Being oblivious to L1 cache conflicts and misses
eventually creates more pressure on lower level caches (e.g., L2) and results in high
latency lower level cache accesses.

The fundamental motivation behind focusing on LLC in previous research efforts
is that a miss on LLC requires high latency main memory access. Although this is a
valid argument, it does not justify to underestimate the effect of L1 (or any cache level
aboveLLC) onmemory access latency.Contrary,we claim that L1 cache access pattern
(i.e., number of accesses, misses, evictions, etc.) has great impact on overall memory
access performance. This is our main motivation to implement a cache-hierarchy-
aware scheduler.

In recent study, Zhang et al. [5] pointed out that there is very limited sharing of
the same cache block among different threads. Modern applications are highly par-
allelized, where each thread is working on independent cache block. For this reason,
it is very unlikely that they will access the same data block, so there is limited or no
data sharing. For example, threads of data-parallel programs may process different
sections of data. Similarly, threads of pipeline programs may execute different tasks
that may not use the same data set. In both cases, there is no concern of shared data
among multiple threads; however, the way the threads use shared cache has an influ-
ence on performance. This observation is important, since programs show different
characteristics in different phases of the execution so that no particular mapping work
well for all the phases. With this motivation, we propose adaptive cache-hierarchy-
aware scheduler. More specifically, adaptive cache-aware-hierarchy scheduling aims
to adopt changing execution characteristics of threads and tries to find best scheduling
that improves the performance by reducing the cache contention and conflicts among
coscheduled threads.

2.3 Contributions

In this work, we conduct a detailed study to show the importance of cache-hierarchy-
aware scheduling for applications running on chip multiprocessors. We investigate
the impact of scheduling threads with different execution characteristics and observe
that the best scheduling for a given thread varies depending on other threads that are
scheduled along with it.

We introduce a fine-grained, multi-metric scoring scheme to classify threads with
respect to their execution characteristics.Weuse this fine-grained,multi-metric scoring
scheme to predict threads that get alongwith each other and schedule them on the same
core. The metrics used in scoring scheme are gathered from L1 cache, as opposed to
LLC as in most of the previous works.

123

International Journal of Parallel Programming (2019) 47:1014–1044 1019

Wepropose anovel cache-hierarchy-aware scheduler that schedules threads in away
that minimizes the number of accesses to the lower level of cache/memory hierarchy
and reduces the number of evictions required on shared caches that eventually limits
the interference. Such a strategy leads to higher system throughput and improved
performance.

The proposed cache-hierarchy-aware scheduler is adaptive, such that it takes
dynamically changing execution characteristics of threads into account. We observe
that by employing our adaptive cache-hierarchy-aware scheduling, the performance
(i.e., instruction per cycle) of the benchmarks used in this work are improved by up
to 12.6% with an average of 7.3% over the static schedules. The improvements are
due to reduced interference among coscheduled threads, leading to reduced number of
evictions/misses and balanced number of accesses that minimizes capacity conflicts.

2.4 Inter-thread Contention and Slowdown

Threads running on the same core compete for L1 cache, while they compete with
all other threads running on chip multiprocessor for shared L2 cache. To assess the
interference among threads and make a good scheduling evaluation, it is necessary to
formulate the slowdown of a thread when running along with other threads.

To avoid effects of other parameters, such as difference between program execution
times and context switches in operating system, we consider the following simplified
scenario. We assume that there are N threads with the same number of instructions
to be executed. The average slowdown of all threads can be calculated as geometric
mean of slowdowns of threads. The scheduler that minimizes the average slowdown
as given in Expression 1 is more desirable.

min N

√
√
√
√

N
∏

i

I PC(i)stand_alone
I PC(i)coscheduled

(1)

There is a trade-off between minimizing the average slowdown andmaximizing the
overall system performance (i.e., IPC). It is possible to have schedules that have lower
average slowdown, while resulting in lower performance. On the other hand, it is pos-
sible to have schedules that provide higher performance, while having higher average
slowdown. Therefore, a good scheduler should find a balance between slowdown and
performance.

2.5 Performance Counters andMonitoring

The chip multiprocessors have performance monitoring units (PMUs) with integrated
hardware performance counters. The statistics that are needed to implement proposed
scheduling algorithm can be collected through PMUs. PMUs can provide fine-grained
statistics with relatively low overhead [6]. Parekh et al. [7] used hardware perfor-
mance counters that provide cache miss and related information to schedule threads
wisely in simultaneous multithreaded processors. Similarly, Bulpin and Pratt [8] used

123

1020 International Journal of Parallel Programming (2019) 47:1014–1044

performance counters to develop symbiotic coscheduling approach on simultaneous
multithreaded processors.

For our proposed cache-hierarchy-aware scheduler, we focus on L1 cache access
pattern of threads and classify them based on their propensity to compete for L1 cache
and their relative effectiveness of L1 cache usage. Although classification of threads
is widely adopted in scheduling research, we observed that they consider a particular
metric to classify threads, such as IPC of each thread and miss rate. Such metrics are
well indicators for certain cases; however, they do not work well for others. Thus,
there is no silver-bullet metric that provides the best for all cases. With this in mind,
we developed a multi-metric scoring scheme to specify execution characteristics of
threads which is used to make scheduling decisions.

2.6 Phase Detection and Prediction

The prediction of thread’s cache access behavior for the next interval is essential to
obtain desired performance. Simply, predicting thread’s cache access behavior for
the next interval will be the same as the previous interval provides reasonable accu-
racy (e.g., between 84 and 95% [9]). Although the accuracy of the prediction can be
increased by using more complex prediction methods, we believe that using last inter-
val behavior as a prediction model for the next interval is sufficient for our purpose. It
is a fair trade-off to have decent prediction accuracy with less complexity, compared
to marginal gain in accuracy with high complexity.

3 Multi-metric Scoring Scheme

The behavior of a thread can be generalized by expressing three attributes for a given
interval. These attributes are aggressiveness, density, and inefficacy. These attributes
are represented in a binary vector, called Attribute Vector (AV). The illustration of AV
is given in Fig. 3.

Each attribute corresponds to different characteristics of a thread. These character-
istics have impact on the overall performance, eventually. The description of attributes
are as follows.

Aggressiveness determines the degree of acrimony of a thread, specifying howmuch a
thread interfere with other threads running concurrently on the same core. Aggressive-
ness of a thread is related to its propensity of evicting cache blocks of other threads.
A thread that has higher eviction rate is considered as aggressive, while the one with
lower eviction rate is considered as complaisant.

Density determines the relative intensity of cache accesses of a thread with respect
to the sum of cache accesses of all threads. If a thread has higher number of cache
accesses, then it is considered as dense. On the other hand, a thread is considered as
sparse if a it has lower number of cache accesses relative to the number of overall
cache accesses made during the given interval.

123

International Journal of Parallel Programming (2019) 47:1014–1044 1021

Fig. 3 Attribute vector (AV) expresses execution characteristics of a thread

Inefficacy determines the degree of efforts of a thread that goes unrewarded. If a
thread has high cache miss ratio, then it is considered as sterile. On the other hand, it
is considered as prolific if a thread has high cache hit ratio.

Although the attributes are related, they are considered as orthogonal to each other.
Note that, a threadmay be sterile, but not aggressive if itsmisses do not cause evictions.

These attributes are represented as bits in the attribute vector. The following for-
mulas are used to determine whether a thread has certain attribute or not.

Aggressiveness(Ti) =
{

1 i f # of L1 evictions(Ti)
of L1 accesses(Ti)

≥ τ a,

0 else

Density(Ti) =
{

1 i f # of L1 accesses(Ti)
∑N

j=0 L1 accesses(Tj)
≥ τ d ,

0 else

Inefficacy(Ti) =
{

1 i f # of L1 misses(Ti)
of L1 accesses(Ti)

≥ τ i ,

0 else

where τ a , τ d and τ i are thresholds for aggressiveness, density and inefficacy, respec-
tively. They are determined empirically. Note that, N is the number of threads running
on the chip multiprocessor.

Each attribute vector corresponds to a decimal value that specifies a multi-metric
score of a thread. This value is calculated as:

Score =
2

∑

i=0

2i × AVi (2)

where AVi represents i th bit of attribute vector of a thread (AVi represents the least
significant bit when i = 0, and AVi represents the most significant bit when i = 2).

123

1022 International Journal of Parallel Programming (2019) 47:1014–1044

Fig. 4 Attribute vector that expresses execution characteristics of a thread in higher resolution

3.1 Scalability of Mutli-metric Scoring Scheme

In case of having large number of threads running on chip multiprocessors with exten-
sive number of cores, the 3-bit attribute vector and scoring schememaynot differentiate
execution characteristics of threads in a desired resolution. This may yield to have
coarse-grained schedules. To have higher resolution of execution characteristics of
threads with fine-grained schedules, it is better to expand the attribute vector. For
each attribute, more bits can be used to specify the attribute in higher resolution. An
example of attribute vector with a higher resolution is shown in Fig. 4.

4 Adaptive Cache-Hierarchy-Aware Thread Scheduling

After collecting information regarding L1 cache performance and updating attribute
vectors of threads, the scheduling decision can be made. The scheduling decision is
made based on the multi-metric scores of threads.

Each candidate schedule has a score expressed as coscheduling score, in short
CoScore. The aimof scheduling is tofind a schedule thatminimizesCoScore calculated
as:

CoScore(Ti , Tj) = AV (Ti) ∧ AV (Tj) (3)

where Ti and Tj are candidate threads to be coscheduled (i.e., Ti �= Tj); and AV (Ti)
and AV (Tj) are attribute vectors of Ti and Tj , respectively. Note that Ti and Tj are
candidate threads, so they are not scheduled yet.

The CoScore is simply a logical bitwise AND operation between multi-metric
scores of candidate threads. It is simple, yet an effective way to find desired schedules
that improve the performance. This, simple AND operation favors scheduling threads

123

International Journal of Parallel Programming (2019) 47:1014–1044 1023

Fig. 5 Coscheduling score (CoScore) calculation

which can get along with each other. Figure 5 shows the illustration of calculating
CoScore and finding the schedule that minimizes CoScore.

CoScore’s most significant bits are dominant in selecting the schedule. Our
approach tends to prefer a CoScore 011 over 100. Hence, metrics can be prioritized
according to their positions in the CoScore.

A schedule that has the lowest CoScore is selected as a candidate. If there are more
than one candidate, then the one that preserves locality is selected (i.e., no thread
migration will be required).

The calculation of CoScore starts with a thread that has the lowest multi-metric
score. Then, a thread that will minimize the coscheduling score when scheduled with
the current thread is found. If there aremultiple threadswith lowest multi-metric score,
a preference is given to the thread with higher IPC. If there are multiple threads with
the same multi-metric score and the same IPC, then a thread is chosen randomly.

When all threads are scheduled to appropriate cores, the performance counters are
reset. With the new scheduling period, attribute vectors of threads are reconstructed,
multi-metric scores of threads are reevaluated and scheduling is re-executed as dis-
cussed. The details of this adaptive cache-hierarchy-aware thread scheduling algorithm
is given in Algorithm 1.

When a thread is scheduled to execute on a different core than it was running on
before, the cache blocks required by this thread have to be reloaded from L2 or lower
level of the cache hierarchy. While this comes with an overhead, we determined that
it is amortized over long execution intervals. This is due to the fact that the number
of cache misses will be reduced as a result of reduced interventions in the scheduled
thread.

123

1024 International Journal of Parallel Programming (2019) 47:1014–1044

Algorithm 1: Cache-hierarchy-aware thread scheduling algorithm.
UnSched_T → unscheduled threads;
UnMapped_T → matched but not mapped threads;
S,C → set of threads to be scheduled;
Ts , Tc → threads to be scheduled;
Ps , Pc → cores on which Ts and Tc run during the last interval, respectively;

while UnSched_T �= empty do
Ts ← a thread that has the lowest score;
if S has multiple threads then /* with the lowest score */

Ts ← select thread ∈ S that has the highest IPC;
if S has multiple threads then /* with the highest IPC */

Ts ← select a thread ∈ S randomly;
end

end

// Find the best candidate to be coscheduled with Ts
C ← a thread ∈ UnSched_T that minimizes CoScore;
if C has multiple threads then /* with the lowest CoScore */

Tc ← select thread ∈ C that run on Ps recently;
else

Tc ← select a thread ∈ C with the highest IPC;
if C has multiple threads then /* with the highest IPC */

Tc ← select a thread ∈ C randomly;
end

end

// Map matched threads to the core
if Ps is available then

map Ts and Tc to Ps ;
end
else if Pc is available then

map Ts and Tc to Pc;
end
else

UnMapped_T ← Ts and Tc
end

end

while UnMapped_T �= empty do
Ts and Tc ← select matched threads from UnMapped_T ;
map Ts and Tc to the available(free) cores;

end

Figure 6 illustrates that how cache-hierarchy-unaware scheduling can penalize the
threads that could perform much better. Notice the lower L1 hit ratio and higher L2
miss ratio. The number of L2 hits is four, while the number of L2 misses is 17.

Figure 7 illustrates that how cache-hierarchy-aware scheduling actually reduces the
number of L2 misses and increases the L1 hit ratio. The same example is used with
Fig. 6. The pressure due to the L1 misses is reduced that results in less number of L2
accesses and L2 misses. While the number of L1 hits is increased from 0 to 4, the
number of L2 misses reduced from 17 to 14. Since this is just an illustration, we do not

123

International Journal of Parallel Programming (2019) 47:1014–1044 1025

Fig. 6 Cache-hierarchy-unaware scheduling. The number of L2 hits is four, while the number of L2 misses
is 17

123

1026 International Journal of Parallel Programming (2019) 47:1014–1044

Fig. 7 Cache-hierarchy-aware scheduling. The number of L2 misses reduced to 14

123

International Journal of Parallel Programming (2019) 47:1014–1044 1027

Table 1 Chip multiprocessor and memory configuration for evaluations

Cores: 4 2 threads per core

Architectural parameters

Private L1 cache (combined) 16 sets, 2-way assoc.

Replacement Policy = LRU block size = 64, latency = 1 cycle

Shared L2 cache 64 sets, 4-way assoc.

Replacement Policy = LRU block size = 64, latency = 10 cycles

Main Memory 128 sets, 8-way assoc.

Replacement Policy = LRU block size = 64, latency = 100 cycles

Table 2 PARSEC benchmarks used in evaluations

Blackscholes (black) Stock-option pricing

Canneal Heuristic for routing cost minimization

dedup Compression with data deduplication

facesim (face) Simulation of a human face motion

fluidanimate (fluid) Fluid dynamics animation

freqmine (freq) Frequent itemset mining

vips Image processing

x264 H.264 video encoding

consider the effects of L1 hits on core 0. In reality, core 0 is most likely generate more
memory requests compared to core 1, since core 0 can continue issuing instructions
in a higher rate due to higher L1 hit ratio.

5 Evaluation

5.1 Simulation Environment

We performed our experiments on multi2sim simulation framework that is developed
to evaluate multicore-multithreaded processors [10]. Otherwise specified, we used the
configuration given in Table 1 for chip multiprocessor and main memory.

We used PARSEC benchmarks to evaluate our proposed adaptive cache-hierarchy-
aware thread scheduling algorithm. PARSEC is a set of multithreaded programs
focusing on emerging workloads and was designed to be a representative set of
next-generation shared-memory programs for chip multiprocessors [11]. In our exper-
iments, we used eight benchmarks from PARSEC suite. Details of the benchmarks are
given in Table 2.

dedup uses the pipeline parallelization model with a dedicated pool of threads
for each pipeline stage. facesim and fluidanimate are streaming programs. blacksc-
holes, canneal, freqmine, vips, and x264 are data-level parallel programswith different
amount and patterns of synchronizations and inter-thread communications.

123

1028 International Journal of Parallel Programming (2019) 47:1014–1044

Table 3 Static schedules used in evaluations

Schedule Core 0 Core 1 Core 2 Core 3

S1 black–vips canneal–dedup face–x264 fluid–freq

S2 black–canneal vips–dedup face–fluid x264–freq

S3 black–dedup vips–canneal face–freq x264–fluid

S4 black–face vips–fluid canneal–x264 dedup–freq

S5 black–x264 vips–freq canneal–face dedup–fluid

S6 black–fluid vips–x264 canneal–freq dedup–face

S7 black–freq vips–face canneal–fluid dedup–x264

At the very beginning of evaluations, we collected profiling regarding all the bench-
marks. We run each benchmark along with other benchmarks one by one on the same
core and observed their respective performances. Then, we select the best schedules
that maximize the performance (i.e., IPC) by using this profiling. At each interval, we
scheduled threads in a way that the overall performance of the IPC is maximized. We
referred these schedules as dynamic-offline and we used them as a baseline to com-
pare against the proposed adaptive cache-hierarchy-aware thread scheduler. We also
compared our adaptive cache-hierarchy-aware thread scheduler with possible static
schedules.

Although IPC of threads obtained during offline profiling do not match the one
obtained on the fly due to interactions of other scheduled threads, it provides a
very good estimate of the highest IPC that can be achieved. Throughout the
experiments, we observed that adaptive cache-hierarchy-aware thread scheduling out-
performs static schedules and it is very close to the IPC achieved by dynamic-offline
schedule.

We have generated seven different static schedules. Since there are eight bench-
marks, we allowed a benchmark to run with a different one on the same core in each
schedule. By doing so, we aimed to cover all possible schedules for eight benchmarks
(running on a four-core chip multiprocessor). We permuted the scheduled threads and
generate distinct thread combinations. Since there are eight benchmarks, each bench-
mark can be scheduled with the remaining seven benchmarks at most. Note that, it
does not matter on which core the two threads are scheduled; however, it matters
which threads are scheduled together. The static schedules generated and correspond-
ing threads running on cores are given in Table 3.

5.2 The Effect of Scheduling on System Performance

In this set of experiments, we compared the effect of different scheduling schemes on
performance for each benchmark (i.e., IPC). Figure 8 shows the IPCof each benchmark
under different schedules.

As it can be seen from Fig. 8, different schedules increase the performance for
different benchmarks. There is no single schedule that outperforms the others for all

123

International Journal of Parallel Programming (2019) 47:1014–1044 1029

S1 S2 S3 S4 S5 S6 S7 D−Off A−CA

blackscholes
IP

C

0.00

0.05

0.10

0.15

S1 S2 S3 S4 S5 S6 S7 D−Off A−CA

canneal

IP
C

0.00

0.05

0.10

0.15

0.20

0.25

S1 S2 S3 S4 S5 S6 S7 D−Off A−CA

dedup

IP
C

0.00

0.05

0.10

0.15

0.20

0.25

0.30

S1 S2 S3 S4 S5 S6 S7 D−Off A−CA

facesim

IP
C

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

S1 S2 S3 S4 S5 S6 S7 D−Off A−CA

fluidanimate

IP
C

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

S1 S2 S3 S4 S5 S6 S7 D−Off A−CA

freqmine

IP
C

0.00

0.05

0.10

0.15

0.20

S1 S2 S3 S4 S5 S6 S7 D−Off A−CA

vips

IP
C

0.00

0.05

0.10

0.15

0.20

0.25

0.30

S1 S2 S3 S4 S5 S6 S7 D−Off A−CA

x264

IP
C

0.00

0.05

0.10

0.15

0.20

Fig. 8 Performance of benchmarks under different scheduling schemes

benchmarks. This is also true for our proposed adaptive cache-hierarchy-aware sched-
uler. An important observation from this figure is that it is necessary to understand the
main dynamics of the overall performance. Instead of increasing the performance of a
particular benchmark, it is more desirable to find a balance among the performance of
all threads. Our adaptive cache-hierarchy-aware scheduler works towards this goal. It
tries to maximize the performance of overall system, not the performance of a partic-
ular thread. So, adaptive cache-hierarchy-aware scheduler does not favor (unfairly) a
particular thread that may contribute to the overall performance the most (i.e., a thread
that has highest potential to increase IPC in case of more resources are given to it).
Instead, it tries to find a balance among threads where they contribute to the overall
system performance.

In the next set of experiments, we compared the overall system performance pro-
vided by different scheduling schemes. The results are given in Fig. 9. As it can be seen,
our adaptive cache-hierarchy-aware scheduler outperforms all the static schedules, and
barely left behind the dynamic-offline scheduling. Note that, dynamic-offline provides
the highest IPC that can be achieved; however, it requires profiling in advance. For
this reason, dynamic-offline is not a practical scheduler, but it helps us to evaluate our
approach against. Figure 9 also shows the effectiveness of adaptive cache-hierarchy-

123

1030 International Journal of Parallel Programming (2019) 47:1014–1044

S1 S2 S3 S4 S5 S6 S7 D−Off A−CA

IP
C

1.20

1.25

1.30

1.35

1.40

1.45

Fig. 9 Comparison of overall system performance under different scheduling schemes

aware scheduler on maximizing overall system performance without unfairly favoring
certain benchmarks.

5.3 Slowdown of Benchmarks

It may be misleading to focus solely on IPC when evaluating scheduling schemes.
As we discussed in Sect. 5.2, the overall system performance can be maximized
by unfairly favoring threads that have higher potential to contribute to the overall
system IPC. However, such an approach is not desirable in most cases. Instead, the
system performance has to be maximized such that each thread contributes to the
overall system performance as much as possible while interference with other threads
is minimized. In other words, fairness should not be traded for performance. The
schedulers proposed for chip multiprocessors should also take slowdown of threads
into account while trying to maximize system performance.

In this set of experiments, we analyzed the behavior of a particular benchmark
when it is scheduled with a different one. Table 4 shows the slowdown of benchmarks
when they run concurrently with another benchmark. Slowdown specifies the degree
of vulnerability of a benchmark to the interference of the other thread.

The slowdowns given in Table 4 are observed on a single core that can run two
threads concurrently. There is only one schedule possible, since two threads exist in
this set of evaluations.

Asnoted earlier, a desired scheduler shouldmaximize the systemperformancewhile
preserving fairness. Since slowdowns of benchmarks provide a notion of fairness, we
can evaluate the effectiveness of schedulers onmaximizing system performance fairly.
Table 5 shows the slowdown of benchmarks when scheduled with another thread on
the same core, while the rest of the benchmarks are running on other cores under the
static scheduling. The slowdowns presented in the rest of the section are observed on
a quad-core chip multiprocessor (i.e., the configuration given in Table 1).

Compared to static schedules, threads can be scheduled with different threads
throughout the execution in dynamic-offline scheduling. For this reason, we repre-
sented overall slowdown for each benchmark and difference between the minimum,
maximum, and average slowdown observed under the static schedules. Table 6 shows

123

International Journal of Parallel Programming (2019) 47:1014–1044 1031

Table 4 Slowdown of a thread when scheduled with another thread on the same core

running with

black canneal dedup face fluid freq vips x264

black – 2.1 3.4 2.5 1.7 2.6 2.9 3.5

canneal 2.8 – 4.3 2.5 1.5 2.8 2.7 3.0

dedup 2.1 1.6 – 1.7 1.3 1.9 1.9 2.1

face 3.2 2.6 4.4 – 1.7 2.8 3.2 3.3

fluid 2.9 2.3 6.2 2.4 – 2.7 2.6 2.9

freq 3.3 2.8 4.3 2.7 1.9 – 3.3 3.4

vips 1.8 1.4 2.2 1.5 1.2 1.6 – 1.9

x264 3.0 2.0 2.9 2.1 1.5 2.2 2.5 –

Table 5 Slowdown of a thread when scheduled with another thread under the static scheduling scheme

running with

black canneal dedup face fluid freq vips x264

black – 4.8 5.0 5.6 3.6 6.3 5.7 5.7

canneal 6.1 – 4.6 3.9 2.9 6.2 4.7 5.7

dedup 5.5 2.4 – 3.0 1.9 4.9 3.8 4.8

face 6.7 3.9 4.6 – 3.0 6.3 5.2 5.9

fluid 5.6 4.0 6.9 4.6 – 5.9 4.9 5.2

freq 8.0 6.3 5.8 6.6 3.6 – 6.2 7.7

vips 3.0 2.3 2.3 2.4 1.9 2.7 – 2.9

x264 4.7 3.8 3.6 4.0 2.8 4.9 4.3 –

the slowdown of benchmarks under dynamic-offline scheduling. The first column
of the table specifies the overall slowdown of benchmarks. The second, third, and
fourth columns of the table specify how much overall slowdown of a thread deviates
from minimum, maximum, and average slowdown observed under the static sched-
ules, respectively. In other words, the second column of the table is calculated as the
subtraction of the minimum slowdown for a thread under the static scheduling from
the slowdown of a thread under the dynamic-offline scheduling. The third and fourth
columns are calculated similarly.

Similar to the dynamic-offline scheduling, adaptive cache-hierarchy-aware schedul-
ing allows threads to be scheduled with different threads throughout the execution.
Table 7 shows the slowdown of benchmarks under the adaptive cache-hierarchy-aware
scheduling. Likewise, the first column of the table specifies the overall slowdown of
benchmarks. The second, third, and fourth columns of the table specify how much
overall slowdown of a thread deviates from minimum, maximum, and average slow-
down observed under the static schedules, respectively.

As indicated earlier, a desired scheduler should also try to minimize average slow-
down while trying to increase system performance. To this end, our proposed adaptive

123

1032 International Journal of Parallel Programming (2019) 47:1014–1044

Table 6 Slowdown of a thread
when scheduled with another
thread under the dynamic-offline
scheduling scheme

Slowdown δ from

Min. (+/−) Max. (+/−) Avg. (+/−)

black 6.0 2.4 −0.3 0.7

canneal 3.9 0.9 −2.3 − 1.0

dedup 3.5 1.6 −2.0 − 0.3

face 3.9 0.9 −2.8 − 1.2

fluid 4.1 0.1 −2.8 − 1.2

freq 7.3 3.6 −0.8 0.9

vips 2.2 0.3 −0.8 − 0.3

x264 4.3 1.5 −0.5 0.3

Table 7 Slowdown of a thread
when scheduled with another
thread under the
cache-hierarchy-aware
scheduling

Slowdown δ from

Min. (+/−) Max. (+/−) Avg. (+/−)

black 7.3 3.7 1.0 2.0

canneal 4.1 1.1 − 2.1 − 0.8

dedup 2.7 0.8 − 2.8 − 1.1

face 4.4 1.4 − 2.3 − 0.7

fluid 4.2 0.2 − 2.6 − 1.1

freq 6.9 3.3 − 1.1 0.6

vips 2.3 0.3 − 0.7 − 0.2

x264 4.0 1.1 − 0.9 − 0.1

S1 S2 S3 S4 S5 S6 S7 D−Off A−CA

sl
ow

do
w

n

2.8

3.0

3.2

3.4

3.6

Fig. 10 Slowdowns of benchmarks under different scheduling schemes

cache-hierarchy-aware scheduler obtains decent slowdown and provides higher sys-
tem performance. Figure 10 shows the comparison of slowdown of all the benchmarks
running under different scheduling schemes.

Proposed adaptive cache-hierarchy-aware scheduler outperforms all other schedul-
ing schemes, including dynamic-offline, except the fifth static schedule (i.e., S5).
However, slowdown observed in S5 and adaptive cache-hierarchy-aware scheduler
are very close. In addition, although S5 has lower slowdown, it does not improve

123

International Journal of Parallel Programming (2019) 47:1014–1044 1033

S1 S2 S3 S4 S5 S6 S7 D−Off A−CA

L2
 M

P
K

I

10

15

20

25

30

Fig. 11 L2 misses per kilo-instructions of benchmarks under different scheduling schemes

the system performance as much as adaptive cache-hierarchy-aware scheduler. If we
consider both slowdown and system performance, we can conclude that the adaptive
cache-hierarchy-aware achieves better results compared to S5.

5.4 The Effect of Scheduling on Cache Performance

An important metric to evaluate the effectiveness of a scheduler is LLC (i.e., L2 in
our case). In this section, we justify why considering higher level of cache hierarchy
in scheduling decisions will eventually affect the performance of LLC.

We used L2 misses per kilo-instructions (MPKI) as a metric to evaluate the effec-
tiveness of the scheduling schemes. The scheduling scheme that minimizes the L2
MPKI is more desirable than the others. Figure 11 shows the L2 MPKI for different
scheduling schemes. As it can be seen, our proposed adaptive cache-hierarchy-aware
scheduler has the lowest L2 MPKI, thereby, justifying our claim on the importance of
higher level caches on LLC performance.

Figure 12 shows the L2 miss rates of the benchmarks for different scheduling
schemes. Although adaptive cache-hierarchy-aware scheduler does not have the min-
imum L2 miss rate, we believe that it is reasonable. The results of L2 miss rate might
be misleading if it is considered without taking corresponding system performance

S1 S2 S3 S4 S5 S6 S7 D−Off A−CA

L2
 m

is
s

ra
tio

0.14

0.15

0.16

0.17

0.18

Fig. 12 L2 miss rates of benchmarks under different scheduling schemes

123

1034 International Journal of Parallel Programming (2019) 47:1014–1044

S1 S2 S3 S4 S5 S6 S7 D−Off A−CA

L1
 M

P
K

I

60

65

70

75

80

Fig. 13 L1 misses per kilo-instructions under different scheduling schemes

(i.e., IPC) into account. There might be cases where threads make slow progress due
to the contention on shared resources, thus generating less number of cache accesses.
These cache accesses might have higher hit rate. On the other hand, there might be
cases where threads make faster progress, thanks to wise scheduler that reduces the
contention on shared resources, thus generating more cache accesses. These accesses
might have lower hit rate compared to the first case. However, we can not conclude
that the scheduling in the first case is better than the second one, solely based on it
has the lower miss rate. In fact, we need to look at what would be the miss rate when
the threads in the first case would also make the same progress as the threads in the
second case. For this reason, we used L2 misses per kilo-instructions as a metric for
performance of cache, instead of L2 miss rate.

As it can be seen from Fig. 12, adaptive cache-hierarchy-aware scheduling has
higher L2 miss rate compared to the second static schedule (i.e. S2). However, the
overall system performance of adaptive cache-hierarchy-aware scheduling is compa-
rably higher than the performance of S2.

Likewise, the adaptive cache-hierarchy-aware scheduling utilizes the L1 cache
much better compared to other scheduling schemes. Figure 13 shows the L1 MPKI
for different schedules. Adaptive cache-hierarchy-aware scheduler outperforms other
scheduling schemes except the fifth static scheduling (i.e. S5). Although S5 has lower
MPKI, its overall system performance is lower than the adaptive cache-hierarchy-
aware scheduler. Despite it seems awkward, there is a logical reason behind it. The
accesses to L1 that are misses go to L2 cache. Some of these misses are also misses in
L2 cache. Thus, these misses require high latency main memory accesses. Compared
to adaptive cache-hierarchy-aware scheduler, the L1 misses of S5 are not found in L2,
so they have to be fetched from main memory. That is why S5 has lower IPC than
adaptive cache-hierarchy-aware scheduler, although it has lower L1 MPKI.

Figure 14 shows the L1 miss rate of benchmarks under different scheduling
schemes. Similar to the L2 miss rate, adaptive cache-hierarchy-aware scheduler does
not have the minimum L1 miss rate. The same argument is also valid in this case.
The results of L1 miss rate might be misleading if it is considered without taking
corresponding system performance (i.e., IPC) and L2 MPKI into account. Note that,
misses onL1might bemisses onL2, aswell. In such cases, high latencymemory access
reduces the system performance. This is why the seventh static scheduling (i.e., S7)

123

International Journal of Parallel Programming (2019) 47:1014–1044 1035

S1 S2 S3 S4 S5 S6 S7 D−Off A−CA

L1
 m

is
s

ra
te

0.26

0.27

0.28

0.29

0.30

0.31

Fig. 14 L1 miss rates of benchmarks under different scheduling schemes

has lower IPC compared to adaptive cache-hierarchy-aware scheduler, although it has
lower L1 miss rate as shown in Fig. 14. The same observation is valid for dynamic-
offline. Although adaptive cache-hierarchy-aware scheduler has lower L1 miss rate,
dynamic-offline has higher IPC compared to adaptive cache-hierarchy-aware sched-
uler.

5.5 Sensitivity of Performance to the Thread Quantum

Threads have a time quantum that is specified as the number of cycles to be executed.
When threads exceed this quantum, the adaptive cache-hierarchy-aware scheduler
updates the scheduling decisions as explained in Sect. 4. After this update, the quanta
of threads are reset and they run on specified cores until the time quantum is exceeded
again.

The number of cycles specified for quanta of threads has an influence on the per-
formance. When the length of quantum is short (i.e., small number of cycles), the
scheduling decision has to be made more often. The drawback of short quantum is
that the decision of scheduling becomes vulnerable to short bursts and fluctuations on
thread behaviors. In addition, the length of quantum may not be sufficient to compen-
sate the overhead due to thread migration (in case a thread is scheduled on a different
core).

On the other hand, if the length of quantum is too long, then the scheduling decision
has to be made less often. The drawback of long quantum is that the execution charac-
teristics of threads may change which may result in with inappropriate scheduling. For
this reason, the length of quantum has an impact on the overall system performance.

Figure 15 shows the effect of quantum length on overall system performance. As it
can be seen, the quantum of 100,000 cycles maximizes the system performance. The
results reported in this chapter are gathered by using a quantum with 100,000 cycles.

5.6 Sensitivity of Performance to theWeights of Thread Attributes

As explained in Sect. 3, the position of a bit (that represents a particular attribute of a
thread) in an attribute vector determines the relative weight of the attribute of interest.

123

1036 International Journal of Parallel Programming (2019) 47:1014–1044

1000 10000 50000 100000 500000 1000000
cycles

IP
C

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Fig. 15 System performance for different thread quantum lengths

AID ADI IAD IDA DAI DIA

IP
C

1.36

1.38

1.40

1.42

1.44

Fig. 16 System performance changes with respect to relative weights of thread attributes

The bit for an attribute with the most significant bit in the attribute vector naturally
obtains the highest weight, while the bit for an attribute with the least significant
bit in the attribute vector obtains the lowest weight. The weights of attributes (i.e.,
position of corresponding bits in attribute vector) have an impact on the overall system
performance.

Figure 16 shows the effect of changing the position of bits for attributes in attribute
vector. Each column represents different ordering of bits for attributes in an attribute
vector. For example, ADI means that the bit for aggressiveness is the most significant
bit in attribute vector, thus it has the highest weight. On the other hand, the bit for
inefficacy is the least significant bit in the attribute vector, thus it has the lowest weight.

We used DAI (i.e., density being the most important attribute and inefficacy being
the least important attribute) for the results reported in this chapter. The relative
importance of density is comprehensible, since L1 cache is limited in size and the
contention for cache blocks is severe. Thus, giving more weight to density allows
adaptive cache-hierarchy-aware scheduler to have tendency to schedule threads that
reduce such contention.

123

International Journal of Parallel Programming (2019) 47:1014–1044 1037

3−bit2−bit1−bit

IP
C

1.28

1.29

1.30

1.31

1.32

Fig. 17 System performancewith respect to the number of bits used to represent each attribute in an attribute
vector

5.7 Sensitivity of Performance to the Resolution of Thread Attributes

Figure 17 shows the effect of the number of bits used for each attribute of a thread
in an attribute vector. Fine-grained scores are possible when higher number of bits is
used. Although one bit for each attribute is fairly enough in case of a small number of
threads, it becomes harder to differentiate candidate schedules (i.e., deciding which
one is better) when the number of threads increases. This is the case, because there
is less number of distinct CoScores possible with less number of bits. For this rea-
son, increasing the number of bits per attribute in attribute vector enables fine-grained
scores. Figure 17 shows the overall system performance for 16 threads running on 8
cores. Notice that, increasing the number of bits results with a higher system perfor-
mance.

It providesmarginal benefit to usemore bits for each attribute for our base simulation
environment where 8 threads are running on four cores. For this reason, we use a single
bit per attribute for the results reported.

5.8 Sensitivity of Performance to Scoring Thresholds

As discussed, each thread has a multi-metric score based on its attributes: aggressive-
ness, density and inefficacy. The decision of a thread being aggressive/complaisant,
dense/sparse and sterile/prolific is given through respective thresholds. Each attribute
has its own threshold, where these thresholds are determined empirically. Table 8
shows the overall system performance with respect to different thresholds for the
attributes.

The aggressiveness, density and inefficacy of a thread are determined as specified in
Sect. 3. The overall system performance is maximized when thresholds are τ a = 1.6,
τ d = 0.3 and τ i = 0.4 where τ a , τ d and τ i are thresholds for aggressiveness, density,
and inefficacy, respectively. The maximum performance obtained is specified as bold
in the table. We used τ a = 1.6, τ d = 0.3 and τ i = 0.4 for the results collected in our
experiments.

123

1038 International Journal of Parallel Programming (2019) 47:1014–1044

Table 8 System performance
with respect to the attribute
thresholds for threads

D I A

0.3 0.4 0.5 0.6

1.4 0.2 1.394 1.402 1.392 1.4

0.3 1.374 1.402 1.394 1.381

0.4 1.388 1.386 1.381 1.394

1.5 0.2 1.409 1.412 1.389 1.389

0.3 1.393 1.393 1.398 1.405

0.4 1.416 1.393 1.391 1.391

1.6 0.2 1.422 1.402 1.411 1.416

0.3 1.407 1.425 1.409 1.409

0.4 1.414 1.395 1.409 1.416

1.7 0.2 1.403 1.378 1.382 1.419

0.3 1.405 1.341 1.393 1.403

0.4 1.404 1.39 1.393 1.393

Bold number represents themaximum system performance is achieved
and corresponding configuration (i.e., D = 1.6, I = 0.3, A = 0.4)

6 RelatedWork

The shift from uniprocessor to chip multiprocessor made scheduling a much more
interesting and compelling problem. Jiang et al. [12] proved that scheduling in chip
multiprocessors with more than two cores is an NP-complete problem. For this reason,
there are numerous heuristics developed for scheduling in chip multiprocessors.

There are three main concerns regarding scheduling. The first one is to improve
the computing efficiency (e.g., [13,14]). The second concern is fairness (e.g., [15])
and the last one is performance isolation (e.g., [16]). There are vast amount of studies
targeted these concerns.

Deciding threads to be coscheduled is one part of the story. In addition to that,
there is also a greater need to decide the amount of resource to be allocated to each
thread. To this end, various replacement and cache partitioning strategies have been
proposed. Notice that, scheduling algorithms are not alternatives to replacement and
cache partitioning strategies; however, they all have impact on each other and, thereby
in the overall system performance.

6.1 Replacement and Partitioning

The threads scheduled on the same core compete for shared cache resources. A request
from a thread can conflict with a request from another one. A thread may need to
evict data that belongs to a different thread in order to bring its own data into shared
cache without considering whether the evicted data will be used by other threads, or
not. Likewise, the benefits obtained through cache usage may differ among threads.
Thus, allowing a thread to use more cache resources although it does not obtain much
benefit from it, may prohibit the possible benefit that could be obtained by other
threads. Such interference and evictions reduce the performance of multiple threads.

123

International Journal of Parallel Programming (2019) 47:1014–1044 1039

If they are not coordinated appropriately, such evictions can be destructive for the
overall system performance. There are various eviction and replacement strategies
such as Least-Recently-Used (LRU) [17–19] and sampling-based adaptive replace-
ment (SBAR) [20]. In addition to replacement policies, there are various partitioning
strategies such as way-partitioning [21] and cache partitioning [15,19,20].

It is challenging for an operating system scheduler to ensure a faster progress for
a high-priority thread on a chip multiprocessor, because the performance of a thread
could be arbitrarily decreased by a high-miss-rate thread that is running concurrently
with this high-priority thread. Fedorova et al. [16] proposed an operating system
scheduler to ensure performance isolation in such cases. In their proposal, threads
running concurrently with similar cache miss rates get equal cache allocations. The
shared cache is allocated based on demand; so, if the threads have similar demands
they will have similar cache allocations.

To improve the cache access efficiency and system performance both replacement
and scheduling strategies should be in place. Therefore, LRU or way-partitioning
schemes are orthogonal to our cache-hierarchy-aware scheduling. Any replacement
policy can be used along with cache-hierarchy-aware scheduler. It is beyond the scope
of this work to tune replacement policy that would work best with the proposed cache-
hierarchy-aware scheduler. Rather, we focus on the cache access characteristics of
threads and try to come up with the best scheduling in which scheduled threads have
the least interference and the number of evictions is minimized.

6.2 Cache-Sharing-Aware Scheduling

Cache-sharing-aware scheduling in operating systems can mitigate the cache con-
tention among scheduled threads by assigning threads that can benefit from running
on the same core by sharing data. Such cache-sharing-aware scheduling schemes can
improve cache usage efficiency and program performance considerably in an envi-
ronment where data sharing among threads is considerable. However, Zhang et al. [5]
showed that cache sharing has insignificant impact on performance of modern appli-
cations. This is due to the fact that there is very limited sharing of the same cache
block among different threads in such applications. These applications are highly par-
allelized, where each thread is working on a different block that are independent from
each other. For this reason, it is very unlikely that they will access the same data block,
so cache-sharing-aware schedulers have limited applicability.

Tam et al. [6] proposed a scheduling scheme to schedule threads based on data
sharing patterns that are detected online through hardware performance counters. The
proposed scheme detects data sharing patterns and clusters threads based on the data
sharing patterns. Then, the scheduler tries to map threads that belong to the same
cluster onto the same processor, or as close as possible to reduce the number of remote
cache accesses for shared data.

Settle et al. [9] developed a memory monitoring framework providing statistics
in simultaneous multithreaded processors. Statistics regarding memory accesses of
threads gathered from the proposed framework can be used to build a scheduler that
minimizes capacity and conflict misses. For each thread, L2 cache accesses are moni-

123

1040 International Journal of Parallel Programming (2019) 47:1014–1044

tored on a set basis to generate per-thread cache activity vectors. These vectors indicate
the sets that are accessed most of the time. The intersection of these vectors specifies
the sets that are likely to be conflicting. This information is then used in scheduling
decisions.

As noticed earlier, there is limited sharing of the same cache block among different
threads in chip multiprocessor workloads that makes cache-sharing-aware scheduling
inefficient. In contrast, our cache-hierarchy-aware scheduler considers more generic
interactions (not just sharing) among threads that makes it applicable and efficient for
diverge set of chip multiprocessor workloads.

6.3 Phase Prediction and Thread Classification

Sherwood et al. [22] introduced phase predictionmethod based on basic block vectors.
Basic block vector represents the code blocks executed during a given interval of
execution.

Chandra et al. [23] focused on L2 cache contention on dual-core chip multiproces-
sors. They proposed analytical model to predict number of L2 cache misses due to
contention of threads on L2 cache.

Cazorla et al. [24] introduced a dynamic resource control mechanism and alloca-
tion policy in simultaneous multithreaded processors. The policy monitors the usage
of resources by each thread and tries to fairly allocate resources to each thread to avoid
monopolization. It classifies threads into groups based on cache access patterns as fast
and slow. Then, it allocates the resources to these groups accordingly. Threads with
pending L1 data misses are classified as members of the slow group and the ones with-
out any pending L1 data misses are classified as members of the fast group. Another
classification is made as active and inactive, based on the usage of certain resources.
This classification allows borrowing resources from an inactive thread for the sake of
an active one. Our approach is similar to theirs since they also used pending L1 data
misses as a classification method; however, our approach differs in variety of ways.
First, we use multiple L1 access characteristics such as number of accesses, miss ratio
and number of evictions that provides better representation of execution characteristics
of threads. Second, they do not rely on L1 access statistics for scheduling, instead they
use it for clustering threads. Third, the goal of this work is not to develop a scheduler,
but it is to develop a dynamic allocation policy for shared resources.

El-Moursy et al. [13] introduced a scheduling algorithm in which threads are
assigned to processors based on the number of ready and in-flight instructions. The
number of ready and in-flight instructions are strong indicators of different execution
phases. The algorithm tries to schedule threads that are in compatible phases. They
also used hardware performance counters to gather information required to assess the
compatibility of thread phases.

Kihm et al. [25] proposed a memory monitoring framework that makes use of
activity vectors that allow scheduler to estimate and predict cache utilization and
inter-thread contention dynamically. However, they do not propose any scheduling
algorithm that actually employs activity vectors.

123

International Journal of Parallel Programming (2019) 47:1014–1044 1041

6.4 Coscheduling

Tian et al. [26] proposed an A*-search-based algorithm to accelerate the search for
optimal schedules. They formulated optimal co-scheduling as a tree-search problem
and developed A*-based algorithm to find optimal schedule. The authors reduced
constraints on finding optimal scheduling such that they allowed threads of different
lengths. Further, they developed and evaluated two approximation algorithms, namely
A*-cluster and local-matching.A*-cluster algorithm is a derivative ofA*-search-based
algorithm that employs online adaptive clustering. It trades accuracy for scalability.
The local-matching algorithm, on the other hand, applies graph theory to find the best
schedule at a given time without any provision for the upcoming schedules. Although
optimal scheduling algorithms are costly and inefficient for practical purposes, they
can provide insights to enhance the practical scheduling algorithms and associated
complexities with them.

Jiang et al. [27] proposed a reuse-distance based [28] locality model that provides
proactive prediction of the performance of scheduled processes. The prediction is
used in run-time scheduling decisions. They employed the proposed locality model in
designing cache-contention-aware proactive scheduling that assigns processes to the
cores according to the predicted cache-contention sensitivities. However, predictive
model has to be constructed for each application through an offline profiling and
learning process.

Snavely et al. [14] introduced a symbiotic scheduler, called SOS (Sample,Optimize,
Symbios) simultaneous multithreaded processor. It identifies the characteristics of
threads that are scheduled through sampling. SOS runs in two distinct phases: sample
phase and symbiosis phase. It gathers information about threads running together in
different schedule permutations during the sample phase. After this sample phase, SOS
picks the schedule that is predicted to be the optimal and proceeds to run this schedule
in the symbiosis phase. The performance metrics of a schedule are gathered through
hardware counters. SOS employs many predictors to identify the best schedule. One
interesting result provided by Snavely et al. is that IPC alone is not a good predictor.
It may happen that threads with higher IPCs monopolize system resources and can
be detrimental to threads with lower IPCs. The limitation of this work is that it tries
many schedules during sample phase to predict the best schedule to be executed
in symbiosis phase. For workloads that are composed of many threads exceeding
the available hardware resources, the sample phase would be much longer. In such a
scenario, threads can change their characteristics that would not be reflected during the
symbiosis phase. Therefore, symbiosis phase would be inaccurate due to the change in
execution characteristics of threads during sample phase. Limited number of samples
can be used to avoid longer sample phase; however, the probability of missing better
schedules is increased in this case.

Suh et al. [29] proposed an online memory monitoring scheme that uses hardware
counters to provide estimates for isolated cache hits/misses with respect to the cache
size. The estimation does not require a change in the cache configuration. This is
achieved by employing single pass simulation method introduced by Sugumar and
Abraham[30]. Theprovided estimation is used in designingmemory-aware scheduling

123

1042 International Journal of Parallel Programming (2019) 47:1014–1044

that schedules processes based on the cache capacity requirements. Themarginal gains
in cache hits for different sizes of cache for each process aremonitored. Then a process
that has low cache capacity requirement is scheduledwith a process that has high cache
capacity requirement to minimize the overall miss ratio.

DeVuyst et al. [31] proposed a scheduling policy for chip multiprocessors that
allows unbalanced schedules (i.e., uneven distribution of threads among the available
cores) if they provide higher performance and energy efficiency. The main challenge
of allowing unbalanced schedules is to have an increased search space with a great
extent.

Our cache-hierarchy-aware scheduler has similarities in goals; however, it is based
onmore general, representative, yet easy to determine and process attributes of threads.
As opposed to previous coscheduling efforts, our scheduler makes use of hardware
counters not to decide schedules directly, instead, they are used to infer the thread
attributes (i.e. aggressiveness, density, and inefficacy) that guide the scheduling and
help to provision how would threads get along with each other if scheduled together.

7 Conclusion and FutureWork

In a chip multiprocessor, the choice of threads to be scheduled on the same core has
significant impact on overall system performance. Inter-thread contention occurs since
coscheduled threads are competing for shared resources. The primary shared resource
that influence the performance is the cache. An efficient scheduling should minimize
the contention for shared caches to maximize utilization and system performance.
Since the execution characteristics of threads varies over time, the scheduling decision
has to be remade based on provisioned behaviors of threads for the near future.

To address this, we propose a novel adaptive cache-hierarchy-aware thread
scheduling algorithm that minimizes the number of accesses to the lower levels of
cache/memory hierarchy and reduces the number of evictions due to contention. We
use a fine-grained, multi-metric scoring scheme to classify threads with respect to their
execution characteristics in the proposed scheduling algorithm. The metrics used in
scoring are obtained from L1 cache, as opposed to LLC as has been done in most of
the previous studies.

We observe that our adaptive cache-hierarchy-aware scheduler improves the per-
formance (i.e., instruction per cycle) of the benchmarks used in this work by up to
12.6% with an average of 7.3% over the static schedules.

The cache partitioning techniques and replacement policies to improve LLC per-
formance are orthogonal to our approach, so they can be used along with our adaptive
cache-hierarchy-aware scheduling scheme. We believe that integration of partition-
ing techniques with our adaptive cache-hierarchy-aware scheduler will provide even
higher performance. Similarly, employing efficient replacement policies will result in
with reduced number of evictions and misses, thus will improve the performance even
further.

As a future work, we will integrate cache partitioning and replacement policies
with our adaptive cache-hierarchy-aware scheduler and evaluate the impact on system
performance.

123

International Journal of Parallel Programming (2019) 47:1014–1044 1043

In addition to the multi-metric scoring scheme, the ability to predict/detect the
regions of the cache that are used by threads can be helpful to minimize inter-thread
conflicts. Such an ability will improve the performance even further. We left these
enhancements as future work.

References

1. Moore, G.E.: Cramming more components onto integrated circuits. Proc. IEEE 86(1), 82–85 (1998).
https://doi.org/10.1109/JPROC.1998.658762

2. Olukotun, K., Nayfeh, B.A., Hammond, L.,Wilson, K., Chang, K.: The case for a single-chipmultipro-
cessor. In: Proceedings of the 7th International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM, New York, NY, USA, pp. 2–11 (1996). https://doi.org/10.
1145/237090.237140

3. Tullsen, D.M., Eggers, S.J., Levy, H.M.: Simultaneous multithreading: maximizing on-chip paral-
lelism. In: Proceedings of the 22nd Annual International Symposium on Computer Architecture, pp.
392–403. ACM, New York, NY, USA (1995). https://doi.org/10.1145/223982.224449

4. Kumar, R., Tullsen, D.M.: Compiling for instruction cache performance on a multithreaded architec-
ture. In: Proceedings of the 35th Annual ACM/IEEE International Symposium on Microarchitecture,
pp. 419–429. IEEE Computer Society Press, Los Alamitos, CA, USA (2002)

5. Zhang, E.Z., Jiang, Y., Shen, X.: Does cache sharing on modern CMP matter to the performance of
contemporary multithreaded programs? In: Proceedings of the 15th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pp. 203–212. ACM, New York, NY, USA (2010).
https://doi.org/10.1145/1693453.1693482

6. Tam,D., Azimi, R., Stumm,M.: Thread clustering: sharing-aware scheduling on SMP-CMP-SMTmul-
tiprocessors. In: Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer
Systems, pp. 47–58. ACM, New York, NY, USA (2007). https://doi.org/10.1145/1272996.1273004

7. Parekh, S.S., Eggers, S.J., Levy, H.M.: Thread-Sensitive Scheduling for SMT Processors. Technical
report, University of Washington (2001)

8. Bulpin, J.R., Pratt, I.A.: Hyper-threading aware process scheduling heuristics. In: Proceedings of
USENIX Annual Technical Conference, p. 27. USENIX Association, Berkeley, CA, USA (2005)

9. Settle, A.,Kihm, J., Janiszewski,A., Connors,D.:Architectural support for enhanced SMT job schedul-
ing. In: Proceedings of the 13th International Conference on Parallel Architectures and Compilation
Techniques, pp. 63–73. IEEE Computer Society, Washington, DC, USA (2004). https://doi.org/10.
1109/PACT.2004.7

10. Ubal, R., Sahuquillo, J., Petit, S., López, P.: Multi2Sim: a simulation framework for CPU-GPU com-
puting. In: Proceedings of the 19th International Symposium on Computer Architecture and High
Performance Computing (2007)

11. Bienia, C.: Benchmarking modern multiprocessors. Ph.D. thesis, Princeton University (2011)
12. Jiang, Y., Shen, X., Chen, J., Tripathi, R.: Analysis and approximation of optimal co-scheduling on

chip multiprocessors. In: Proceedings of the 17th International Conference on Parallel Architectures
and Compilation Techniques, pp. 220–229. ACM, New York, NY, USA (2008). https://doi.org/10.
1145/1454115.1454146

13. El-Moursy, A., Garg, R., Albonesi, D.H., Dwarkadas, S.: Compatible phase co-scheduling on a CMP
of multi-threaded processors. In: Proceedings of the 20th International Conference on Parallel and
Distributed Processing, p. 141. IEEE Computer Society, Washington, DC, USA (2006)

14. Snavely, A., Tullsen, D.M.: Symbiotic jobscheduling for a simultaneous multithreaded processor. In:
Proceedings of the 9th International Conference on Architectural Support for Programming Languages
and Operating Systems, pp. 234–244. ACM, New York, NY, USA (2000). https://doi.org/10.1145/
378993.379244

15. Kim, S., Chandra, D., Solihin, Y.: Fair cache sharing and partitioning in a chip multiprocessor architec-
ture. In: Proceedings of the 13th International Conference on Parallel Architectures and Compilation
Techniques, pp. 111–122. IEEE Computer Society, Washington, DC, USA (2004) . https://doi.org/10.
1109/PACT.2004.15

16. Fedorova, A., Seltzer, M., Smith, M.D.: Improving performance isolation on chip multiprocessors
via an operating system scheduler. In: Proceedings of the 16th International Conference on Parallel

123

https://doi.org/10.1109/JPROC.1998.658762
https://doi.org/10.1145/237090.237140
https://doi.org/10.1145/237090.237140
https://doi.org/10.1145/223982.224449
https://doi.org/10.1145/1693453.1693482
https://doi.org/10.1145/1272996.1273004
https://doi.org/10.1109/PACT.2004.7
https://doi.org/10.1109/PACT.2004.7
https://doi.org/10.1145/1454115.1454146
https://doi.org/10.1145/1454115.1454146
https://doi.org/10.1145/378993.379244
https://doi.org/10.1145/378993.379244
https://doi.org/10.1109/PACT.2004.15
https://doi.org/10.1109/PACT.2004.15

1044 International Journal of Parallel Programming (2019) 47:1014–1044

Architecture and Compilation Techniques, pp. 25–38. IEEE Computer Society, Washington, DC, USA
(2007). https://doi.org/10.1109/PACT.2007.40

17. Denning, P.J.: The working set model for program behavior. Commun. ACM 11(5), 323–333 (1968).
https://doi.org/10.1145/363095.363141

18. Wong, W., Baer, J.L.: Modified LRU policies for improving second-level cache behavior. In: Pro-
ceedings of the 6th International Symposium on High Performance Computer Architecture, pp. 49–60
(2000). https://doi.org/10.1109/HPCA.2000.824338

19. Stone, H.S., Turek, J., Wolf, J.L.: Optimal partitioning of cache memory. IEEE Trans. Comput. 41(9),
1054–1068 (1992). https://doi.org/10.1109/12.165388

20. Qureshi, M.K., Lynch, D.N., Mutlu, O., Patt, Y.N.: A case for MLP-aware cache replacement. In:
Proceedings of the 33rd Annual International Symposium on Computer Architecture. IEEE Computer
Society, Washington, DC, USA, pp. 167–178 (2006). https://doi.org/10.1109/ISCA.2006.5

21. Chiou, D., Devadas, S., Rudolph, L., Ang, B.S., Chiouy, D., Chiouy, D., Rudolphy, L., Rudolphy, L.,
Devadasy, S., Devadasy, S., Angz, B.S., Angz, B.S.: Dynamic cache partitioning via columnization.
In: Proceedings of Design Automation Conference (2000)

22. Sherwood, T., Perelman, E., Hamerly, G., Calder, B.: Automatically characterizing large scale program
behavior. In: Proceedings of the 10th International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pp. 45–57. ACM, New York, NY, USA (2002). https://doi.
org/10.1145/605397.605403

23. Chandra, D., Guo, F., Kim, S., Solihin, Y.: Predicting inter-thread cache contention on a chip multi-
processor architecture. In: Proceedings of the 11th International Symposium on High Performance
Computer Architecture, pp. 340–351. IEEE Computer Society, Washington, DC, USA (2005). https://
doi.org/10.1109/HPCA.2005.27

24. Cazorla, F.J., Ramirez, A., Valero, M., Fernandez, E.: Dynamically controlled resource allocation
in SMT processors. In: Proceedings of the 37th Annual IEEE/ACM International Symposium on
Microarchitecture, pp. 171–182. IEEE Computer Society, Washington, DC, USA (2004). https://doi.
org/10.1109/MICRO.2004.17

25. Kihm, J.L., Janiszewski, A.W., Connors, D.A.: Dynamically controlled resource allocation in SMT
processors. In: Proceedings of International Conference on Computing, Communications and Control
Technologies (2004)

26. Tian, K., Jiang, Y., Shen, X.: A study on optimally co-scheduling jobs of different lengths on chip
multiprocessors. In: Proceedings of the 6th ACM Conference on Computing Frontiers, pp. 41–50.
ACM, New York, NY, USA (2009). https://doi.org/10.1145/1531743.1531752

27. Jiang, Y., Tian, K., Shen, X.: Analysis and approximation of optimal co-scheduling on chip mul-
tiprocessors. In: Proceedings of the 5th International Conference on High Performance Embedded
Architectures and Compilers, pp. 201–215. Springer, Berlin, Heidelberg (2010)

28. Ding,C., Zhong,Y.: Predictingwhole-program locality through reuse distance analysis. In: Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and Implementation, pp. 245–
257. ACM, New York, NY, USA (2003). https://doi.org/10.1145/781131.781159

29. Suh, G.E., Devadas, S., Rudolph, L.: A newmemorymonitoring scheme for memory-aware scheduling
and partitioning. In: Proceedings of the 8th International Symposium on High Performance Computer
Architecture, pp. 117–128. IEEE Computer Society, Washington, DC, USA (2002)

30. Sugumar, R.A., Abraham, S.G.: Set-associative cache simulation using generalized binomial trees.
ACM Trans. Comput. Syst. 13(1), 32–56 (1995). https://doi.org/10.1145/200912.200918

31. DeVuyst, M., Kumar, R., Tullsen, D.M.: Exploiting unbalanced thread scheduling for energy and
performance on a CMP of SMT processors. In: Proceedings of the 20th International Conference on
Parallel and Distributed Processing, pp. 140–149. IEEE Computer Society, Washington, DC, USA
(2006)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1109/PACT.2007.40
https://doi.org/10.1145/363095.363141
https://doi.org/10.1109/HPCA.2000.824338
https://doi.org/10.1109/12.165388
https://doi.org/10.1109/ISCA.2006.5
https://doi.org/10.1145/605397.605403
https://doi.org/10.1145/605397.605403
https://doi.org/10.1109/HPCA.2005.27
https://doi.org/10.1109/HPCA.2005.27
https://doi.org/10.1109/MICRO.2004.17
https://doi.org/10.1109/MICRO.2004.17
https://doi.org/10.1145/1531743.1531752
https://doi.org/10.1145/781131.781159
https://doi.org/10.1145/200912.200918

	Adaptive Thread Scheduling in Chip Multiprocessors
	Abstract
	1 Introduction
	2 Background
	2.1 Problem Statement
	2.2 Motivation
	2.3 Contributions
	2.4 Inter-thread Contention and Slowdown
	2.5 Performance Counters and Monitoring
	2.6 Phase Detection and Prediction

	3 Multi-metric Scoring Scheme
	3.1 Scalability of Mutli-metric Scoring Scheme

	4 Adaptive Cache-Hierarchy-Aware Thread Scheduling
	5 Evaluation
	5.1 Simulation Environment
	5.2 The Effect of Scheduling on System Performance
	5.3 Slowdown of Benchmarks
	5.4 The Effect of Scheduling on Cache Performance
	5.5 Sensitivity of Performance to the Thread Quantum
	5.6 Sensitivity of Performance to the Weights of Thread Attributes
	5.7 Sensitivity of Performance to the Resolution of Thread Attributes
	5.8 Sensitivity of Performance to Scoring Thresholds

	6 Related Work
	6.1 Replacement and Partitioning
	6.2 Cache-Sharing-Aware Scheduling
	6.3 Phase Prediction and Thread Classification
	6.4 Coscheduling

	7 Conclusion and Future Work
	References

