Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–16 of 16 results
Advanced filters: Author: J. Kreikebaum Clear advanced filters
  • Typical quantum error correcting codes assign fixed roles to the underlying physical qubits. Now the performance benefits of alternative, dynamic error correction schemes have been demonstrated on a superconducting quantum processor.

    • Alec Eickbusch
    • Matt McEwen
    • Alexis Morvan
    ResearchOpen Access
    Nature Physics
    P: 1-8
  • Experimental measurements of high-order out-of-time-order correlators on a superconducting quantum processor show that these correlators remain highly sensitive to the quantum many-body dynamics in quantum computers at long timescales.

    • Dmitry A. Abanin
    • Rajeev Acharya
    • Nicholas Zobrist
    ResearchOpen Access
    Nature
    Volume: 646, P: 825-830
  • In a quantum simulation of a (2+1)D lattice gauge theory using a superconducting quantum processor, the dynamics of strings reveal the transition from deconfined to confined excitations as the effective electric field is increased.

    • T. A. Cochran
    • B. Jobst
    • P. Roushan
    ResearchOpen Access
    Nature
    Volume: 642, P: 315-320
  • Qutrits, or quantum three-level systems, can provide advantages over qubits in certain quantum information applications, and high-fidelity single-qutrit gates have been demonstrated. Goss et al. realize high-fidelity entangling gates between two superconducting qutrits that are universal for ternary computation.

    • Noah Goss
    • Alexis Morvan
    • Irfan Siddiqi
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-6
  • Colour code on a superconducting qubit quantum processor is demonstrated, reporting above-breakeven performance and logical error scaling with increased code size by a factor of 1.56 moving from distance-3 to distance-5 code.

    • N. Lacroix
    • A. Bourassa
    • K. J. Satzinger
    ResearchOpen Access
    Nature
    Volume: 645, P: 614-619
  • A hybrid analogue–digital quantum simulator is used to demonstrate beyond-classical performance in benchmarking experiments and to study thermalization phenomena in an XY quantum magnet, including the breakdown of Kibble–Zurek scaling predictions and signatures of the Kosterlitz–Thouless phase transition.

    • T. I. Andersen
    • N. Astrakhantsev
    • X. Mi
    ResearchOpen Access
    Nature
    Volume: 638, P: 79-85
  • By implementing random circuit sampling, experimental and theoretical results establish the existence of transitions to a stable, computationally complex phase that is reachable with current quantum processors.

    • A. Morvan
    • B. Villalonga
    • S. Boixo
    ResearchOpen Access
    Nature
    Volume: 634, P: 328-333
  • It is hoped that simulations of molecules and materials will provide a near-term application of quantum computers. A study of the performance of error mitigation highlights the obstacles to scaling up these calculations to practically useful sizes.

    • T. E. O’Brien
    • G. Anselmetti
    • N. C. Rubin
    ResearchOpen Access
    Nature Physics
    Volume: 19, P: 1787-1792
  • An experimental investigation of the dynamics of the spin ½ Floquet XXZ model finds bound states as predicted, and also robustness to noise and non-integrability when theoretical descriptions start to fail.

    • A. Morvan
    • T. I. Andersen
    • P. Roushan
    ResearchOpen Access
    Nature
    Volume: 612, P: 240-245
  • Physical realizations of qubits are often vulnerable to leakage errors, where the system ends up outside the basis used to store quantum information. A leakage removal protocol can suppress the impact of leakage on quantum error-correcting codes.

    • Kevin C. Miao
    • Matt McEwen
    • Yu Chen
    ResearchOpen Access
    Nature Physics
    Volume: 19, P: 1780-1786
  • Two below-threshold surface code memories on superconducting processors markedly reduce logical error rates, achieving high efficiency and real-time decoding, indicating potential for practical large-scale fault-tolerant quantum algorithms.

    • Rajeev Acharya
    • Dmitry A. Abanin
    • Nicholas Zobrist
    ResearchOpen Access
    Nature
    Volume: 638, P: 920-926
  • A unitary protocol for braiding projective non-Abelian Ising anyons in a generalized stabilizer code is implemented on a superconducting processor, allowing for verification of their fusion rules and realization of their exchange statistics.

    • T. I. Andersen
    • Y. D. Lensky
    • P. Roushan
    ResearchOpen Access
    Nature
    Volume: 618, P: 264-269