Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–7 of 7 results
Advanced filters: Author: M. Torunbalci Clear advanced filters
  • Typical quantum error correcting codes assign fixed roles to the underlying physical qubits. Now the performance benefits of alternative, dynamic error correction schemes have been demonstrated on a superconducting quantum processor.

    • Alec Eickbusch
    • Matt McEwen
    • Alexis Morvan
    ResearchOpen Access
    Nature Physics
    P: 1-8
  • Experimental measurements of high-order out-of-time-order correlators on a superconducting quantum processor show that these correlators remain highly sensitive to the quantum many-body dynamics in quantum computers at long timescales.

    • Dmitry A. Abanin
    • Rajeev Acharya
    • Nicholas Zobrist
    ResearchOpen Access
    Nature
    Volume: 646, P: 825-830
  • Colour code on a superconducting qubit quantum processor is demonstrated, reporting above-breakeven performance and logical error scaling with increased code size by a factor of 1.56 moving from distance-3 to distance-5 code.

    • N. Lacroix
    • A. Bourassa
    • K. J. Satzinger
    ResearchOpen Access
    Nature
    Volume: 645, P: 614-619
  • In a quantum simulation of a (2+1)D lattice gauge theory using a superconducting quantum processor, the dynamics of strings reveal the transition from deconfined to confined excitations as the effective electric field is increased.

    • T. A. Cochran
    • B. Jobst
    • P. Roushan
    ResearchOpen Access
    Nature
    Volume: 642, P: 315-320
  • A hybrid analogue–digital quantum simulator is used to demonstrate beyond-classical performance in benchmarking experiments and to study thermalization phenomena in an XY quantum magnet, including the breakdown of Kibble–Zurek scaling predictions and signatures of the Kosterlitz–Thouless phase transition.

    • T. I. Andersen
    • N. Astrakhantsev
    • X. Mi
    ResearchOpen Access
    Nature
    Volume: 638, P: 79-85
  • In this work, Meisenheimer et al. use careful epitaxial growth of FeGa thin films to achieve a metastable state with remarkably high magetostrictive coefficients. Materials with strong magnetostrictive properties are vital components in magnetoelectric multiferroic heterostructures, with considerable potential for use a variety of technologies.

    • P. B. Meisenheimer
    • R. A. Steinhardt
    • J. T. Heron
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-8
  • Two below-threshold surface code memories on superconducting processors markedly reduce logical error rates, achieving high efficiency and real-time decoding, indicating potential for practical large-scale fault-tolerant quantum algorithms.

    • Rajeev Acharya
    • Dmitry A. Abanin
    • Nicholas Zobrist
    ResearchOpen Access
    Nature
    Volume: 638, P: 920-926