+
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hydrogen sulfide drives horizontal transfer of plasmid-borne antibiotic resistance genes in wastewater ecosystems

Abstract

Antibiotic resistance genes (ARGs), which spread via horizontal gene transfer, pose a significant threat to global health. Although exogenous stressors are known to promote conjugation, the role of endogenous microbial metabolites remains poorly understood. Here we report that hydrogen sulfide (H2S)—a ubiquitous metabolite in wastewater—acts as a potent, yet overlooked, promoter of plasmid conjugation, enhancing conjugation frequency and broadening the recipient range of plasmid RP4 within wastewater microbiota. We elucidate a plasmid-autonomous activation mechanism distinct from the classic SOS response. Specifically, plasmid RP4 uses its encoded protein Upf32.8 (renamed GlsS32.8) to sense intracellular glutamine levels, trigger plasmid de-repression and enhance RP4-specific glutamine-centric metabolic hijacking from the host, thereby facilitating conjugation under H2S. Notably, evolutionary analysis shows that GlsS32.8 is conserved across globally prevalent IncP-1α plasmids, underscoring a universal risk of ARG spread in H2S-rich environments. Our findings redefine microbial metabolites as critical players in resistance spread and provide valuable insights into plasmid–host interactions for combatting ARG dissemination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: H2S drives the conjugative transfer of plasmid RP4 within wastewater microbiota.
Fig. 2: H2S drives plasmid conjugation by intensifying RP4-specific glutamine hijacking.
Fig. 3: H2S drives plasmid RP4 conjugation by de-repressing transfer genes and supplying glutamine-derived dNTPs.
Fig. 4: Upf32.8 is essential for H2S-driven plasmid conjugation.
Fig. 5: The AA sequence and protein structure of Upf32.8.
Fig. 6: GlsS32.8 is a conserved backbone protein within globally distributed IncP-1α plasmids.
Fig. 7: Proposed plasmid–host interactions in the presence and absence of sulfide.

Data availability

The RNA sequencing and 16 s rRNA sequencing data have been deposited in the National Center for Biotechnology Information (NCBI) Short-Read Archive (SRA) under accession no. PRJNA1242992 and PRJNA1242997, respectively. In addition, the raw data for the mass spectrometry proteomics and metabolome have been deposited to the ProteomeXchange Consortium via the iProX partner repository with the dataset identifier PXD062398 and the National Genomics Data Center (identifier no. PRJCA037937), respectively. Source data are available via figshare at https://doi.org/10.6084/m9.figshare.29533577 (ref. 51).

References

  1. Naghavi, M. et al. Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050. Lancet 404, 1199–1226 (2024).

    Article  Google Scholar 

  2. Li, Y. et al. Engineered DNA scavenger for mitigating antibiotic resistance proliferation in wastewater treatment. Nat. Water 2, 758–769 (2024).

    Article  CAS  Google Scholar 

  3. Castañeda-Barba, S., Top, E. M. & Stalder, T. Plasmids, a molecular cornerstone of antimicrobial resistance in the One Health era. Nat. Rev. Microbiol. 22, 18–32 (2024).

    Article  PubMed  Google Scholar 

  4. Wang, D. et al. Understanding bacterial ecology to combat antibiotic resistance dissemination. Trends Biotechnol. 43, 1566–1582 (2025).

  5. Lin, X. et al. Oxytetracycline and heavy metals promote the migration of resistance genes in the intestinal microbiome by plasmid transfer. ISME J. 17, 2003–2013 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Beaber, J. W., Hochhut, B. & Waldor, M. K. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 427, 72–74 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Wang, Y. et al. Non-antibiotic pharmaceuticals promote the transmission of multidrug resistance plasmids through intra-and intergenera conjugation. ISME J. 15, 2493–2508 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Qiu, Z. et al. Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera. Proc. Natl Acad. Sci. USA 109, 4944–4949 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jiang, G. M. et al. Dosing free nitrous acid for sulfide control in sewers: results of field trials in Australia. Water Res. 47, 4331–4339 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Cen, X. et al. Integrated application of nanoscale zero-valent iron for sulfide and methane control in sewers and improved wastewater treatment. Water Res. 276, 123248 (2025).

  11. Shatalin, K. et al. Inhibitors of bacterial H2S biogenesis targeting antibiotic resistance and tolerance. Science 372, 1169–1175 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fu, M. et al. Hydrogen sulfide (H2S) metabolism in mitochondria and its regulatory role in energy production. Proc. Natl Acad. Sci. USA 109, 2943–2948 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Walsh, B. J. C. et al. The response of Acinetobacter baumannii to hydrogen sulfide reveals two independent persulfide-sensing systems and a connection to biofilm regulation. mBio 11, 10–1128 (2020).

    Article  Google Scholar 

  14. Huang, H. N., Zheng, X., Yang, S. Y. & Chen, Y. G. More than sulfidation: Roles of biogenic sulfide in attenuating the impacts of CuO nanoparticle on antibiotic resistance genes during sludge anaerobic digestion. Water Res. 158, 1–10 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Mironov, A. et al. Mechanism of H2S-mediated protection against oxidative stress in Escherichia coli. Proc. Natl Acad. Sci. USA 114, 6022–6027 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mishanina, A. V., Libiad, M. & Banerjee, R. Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways. Nat. Chem. Biol. 11, 457–464 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Olson, K. R. et al. Metabolism of hydrogen sulfide (H2S) and production of reactive sulfur species (RSS) by superoxide dismutase. Redox Biol 15, 74–85 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Huang, H. N. et al. Reductive stress boosts the horizontal transfer of plasmid-borne antibiotic resistance genes: the neglected side of the intracellular redox spectrum. Environ. Sci. Technol. 56, 15594–15606 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Yu, Z., Wang, Y., Lu, J., Bond, P. L. & Guo, J. Nonnutritive sweeteners can promote the dissemination of antibiotic resistance through conjugative gene transfer. ISME J. 15, 2117–2130 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huang, H. N. et al. Nitric oxide: a neglected driver for the conjugative transfer of antibiotic resistance genes among wastewater microbiota. Environ. Sci. Technol. 56, 6466–6478 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Dietel, A. K., Kaltenpoth, M. & Kost, C. Convergent evolution in intracellular elements: plasmids as model endosymbionts. Trends Microbiol 26, 755–768 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. San Millan, A. et al. Integrative analysis of fitness and metabolic effects of plasmids in Pseudomonas aeruginosa PAO1. ISME J. 12, 3014–3024 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kodama, M. et al. A shift in glutamine nitrogen metabolism contributes to the malignant progression of cancer. Nat. Commun. 11, 1320 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pansegrau, W. et al. Complete nucleotide sequence of Birmingham IncPα plasmids: compilation and comparative analysis. J. Mol. Biol. 239, 623–663 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. König, B., Müller, J. J., Lanka, E. & Heinemann, U. Crystal structure of KorA bound to operator DNA: insight into repressor cooperation in RP4 gene regulation. Nucleic Acids Res. 37, 1915–1924 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li, L. G. et al. Estimating the transfer range of plasmids encoding antimicrobial resistance in a wastewater treatment plant microbial community. Environ. Sci. Tech. Let. 5, 260–265 (2018).

    Article  CAS  Google Scholar 

  27. Wu, J. et al. Phthalates promote dissemination of antibiotic resistance genes: an overlooked environmental risk. Environ. Sci. Technol. 57, 6876–6887 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Chen, I., Christie, P. J. & Dubnau, D. The ins and outs of DNA transfer in bacteria. Science 310, 1456–1460 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Parveen, S. et al. Glutamine metabolism inhibition has dual immunomodulatory and antibacterial activities against Mycobacterium tuberculosis. Nat. Commun. 14, 7427 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Virolle, C., Goldlust, K., Djermoun, S., Bigot, S. & Lesterlin, C. Plasmid transfer by conjugation in Gram-negative bacteria: from the cellular to the community level. Genes 11, 1239 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mouilleron, S. & Golinelli-Pimpaneau, B. Conformational changes in ammonia-channeling glutamine amidotransferases. Curr. Opin. Struc. Biol. 17, 653–664 (2007).

    Article  CAS  Google Scholar 

  32. Mäntsälä, P. & Zalkin, H. Glutamine amidotransferase function. Replacement of the active-site cysteine in glutamine phosphoribosylpyrophosphate amidotransferase by site-directed mutagenesis. J. Biol. Chem. 259, 14230–14236 (1984).

    Article  PubMed  Google Scholar 

  33. Mouilleron, S., Badet-Denisot, M. A. & Golinelli-Pimpaneau, B. Glutamine binding opens the ammonia channel and activates glucosamine-6P synthase. J. Biol. Chem. 281, 4404–4412 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Yu, K. et al. CeO2 nanoparticles regulate the propagation of antibiotic resistance genes by altering cellular contact and plasmid transfer. Environ. Sci. Technol. 54, 10012–10021 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Liao, J., Huang, H. & Chen, Y. CO2 promotes the conjugative transfer of multiresistance genes by facilitating cellular contact and plasmid transfer. Environ. Int. 129, 333–342 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Qiu, X., Wang, B., Ren, S., Liu, X. & Wang, Y. Regulation of quorum sensing for the manipulation of conjugative transfer of antibiotic resistance genes in wastewater treatment system. Water Res. 253, 121222 (2024).

    Article  CAS  PubMed  Google Scholar 

  37. Klümper, U. et al. Broad host range plasmids can invade an unexpectedly diverse fraction of a soil bacterial community. ISME J. 9, 934–945 (2015).

    Article  PubMed  Google Scholar 

  38. Fedorov, Y. A., Mikhailenko, A. & Dotsenko, I. Sulfide sulfur in water objects with different mineralization. Water Resour. 46, S59–S64 (2019).

    Article  CAS  Google Scholar 

  39. Asaoka, S. et al. Spatial distribution of hydrogen sulfide and sulfur species in coastal marine sediments Hiroshima Bay, Japan. Mar. Pollut. Bull. 133, 891–899 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Jorquera, M., Yamaguchi, N., Tani, K. & Nasu, M. Stimulatory effect of glutamine and pyruvate on plasmid transfer between Pseudomonas strains. Microbes Environ 22, 320–326 (2007).

    Article  Google Scholar 

  41. Zhao, C. et al. Metabolite cross-feeding promoting NADH production and electron transfer during efficient SMX biodegradation by a denitrifier and S. oneidensis MR-1 in the presence of nitrate. Environ. Sci. Technol. 57, 18306–18316 (2023).

    Article  CAS  PubMed  Google Scholar 

  42. Liu, M., Zhang, X. & Tan, T. The effect of amino acids on lipid production and nutrient removal by Rhodotorula glutinis cultivation in starch wastewater. Bioresour. Technol. 218, 712–717 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Coeffier, M., Marion, R., Ducrotte, P. & Dechelotte, P. Modulating effect of glutamine on IL-1β-induced cytokine production by human gut. Clin. Nutr. 22, 407–413 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Leister, C. & Hügler, M. Genome analysis of Enterobacter asburiae and Lelliottia spp. proliferating in oligotrophic drinking water reservoirs and lakes. Appl. Environ. Microb. 88, e00471–00422 (2022).

    Article  Google Scholar 

  45. Humbert, M., Huguet, K. T., Coulombe, F. & Burrus, V. Entry exclusion of conjugative plasmids of the IncA, IncC, and related untyped incompatibility groups. J. Bacteriol. https://doi.org/10.1128/jb.00731-00718 (2019).

  46. Pfeifer, E. & Rocha, E. P. Phage-plasmids promote recombination and emergence of phages and plasmids. Nat. Commun. 15, 1545 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Huang, W., Wang, F., Su, Y., Huang, H. & Luo, J. Underestimated roles of phages in biological wastewater treatment systems: recent advances and challenges. J. Hazard. Mater. 495, 139007 (2025).

  48. Lu, P. et al. L-glutamine provides acid resistance for Escherichia coli through enzymatic release of ammonia. Cell Res 23, 635–644 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Madeira, F. et al. The EMBL-EBI Job Dispatcher sequence analysis tools framework in 2024. Nucleic Acids Res. 52, W521–W525 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Robert, X. & Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42, W320–W324 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Huang, H. et al. Database title. figshare https://doi.org/10.6084/m9.figshare.29533577 (2025).

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (grant nos. 52470056 to H.H., 52470053 to Y.C. and 52100059 to H.H.) and the special fund of State Key Laboratory of Regional Environment and Sustainability (grant no. 25K05REST to H.H.). We thank B.F. Smets from Aarhus University, as well as Y. Luo and X. Wang from Nanjing University, for generously providing the GFP-tagged plasmid RP4.

Author information

Authors and Affiliations

Authors

Contributions

Y.C. and J.G. supervised the project and revised the paper. H.H. conceived of the study, designed and performed the experiments, prepared the figures and wrote the original draft. L.L., Q.L. and X.L. assisted with data analysis. J. Liao and J.Z. contributed to plasmid database searching and analysis. Y.S. and J. Luo helped with drawing the schematics and edited the paper. L.D., L.F. and X.Z. contributed to the experimental procedures and provided feedback on the paper. All authors discussed the results, contributed to their interpretation and approved the final version.

Corresponding authors

Correspondence to Jianhua Guo or Yinguang Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Timothy Walsh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text 1–7 and Figs. 1–14.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–12.

Supplementary Data 1

Source data for supplementary figures.

Source data

Source Data Fig. 1

Source data for Fig. 1.

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Source Data Fig. 4

Source data for Fig. 4.

Source Data Fig. 6

Source data for Fig. 6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Lin, L., Liu, Q. et al. Hydrogen sulfide drives horizontal transfer of plasmid-borne antibiotic resistance genes in wastewater ecosystems. Nat Water (2025). https://doi.org/10.1038/s44221-025-00523-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s44221-025-00523-7

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载