+
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clonal hematopoiesis in myeloid malignancies and solid tumors

Abstract

Clonal hematopoiesis (CH) results from clonal expansion of hematopoietic stem cells. In specific contexts, CH is linked with an increased risk of blood cancers and mortality in individuals with solid tumors. To understand the mechanisms and clinical relevance of this association, it is crucial to explore the reciprocal relationship between CH and cancer. Here, we provide an updated summary of the mechanisms known to drive CH in blood cancers and solid tumors. In addition, we review proposed strategies to intercept CH and examine their impact on solid tumor-directed therapies, including immunostimulatory therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genetic, cellular and environmental bases of CH in cancer.
Fig. 2: Intrinsic and extrinsic contributions of DNA damage to CH.
Fig. 3: Varieties of somatic mutations associated with CH.
Fig. 4: Impact of CH-derived leukocytes on the TME and potential interventions.

Similar content being viewed by others

References

  1. Kanagal-Shamanna, R., Beck, D. B. & Calvo, K. R. Clonal hematopoiesis, inflammation, and hematologic malignancy. Annu. Rev. Pathol. 19, 479–506 (2024).

    Article  CAS  PubMed  Google Scholar 

  2. Ayachi, S., Buscarlet, M. & Busque, L. 60 Years of clonal hematopoiesis research: from X-chromosome inactivation studies to the identification of driver mutations. Exp. Hematol. 83, 2–11 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Warren, J. T. & Link, D. C. Clonal hematopoiesis and risk for hematologic malignancy. Blood 136, 1599–1605 (2020).

    PubMed  PubMed Central  Google Scholar 

  4. Coombs, C. C. et al. Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clinical outcomes. Cell Stem Cell 21, 374–382 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pedersen, R. K., Andersen, M., Stiehl, T. & Ottesen, J. T. Mathematical modelling of the hematopoietic stem cell-niche system: clonal dominance based on stem cell fitness. J. Theor. Biol. 518, 110620 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Tothova, Z. et al. Multiplex CRISPR/Cas9-based genome editing in human hematopoietic stem cells models clonal hematopoiesis and myeloid neoplasia. Cell Stem Cell 21, 547–555 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kapadia, C. D. et al. Clonal hematopoiesis in mice is common with age and accelerated by microbial exposure. Blood 140, 5741–5742 (2022).

    Article  Google Scholar 

  8. Buttigieg, M. M. & Rauh, M. J. Clonal hematopoiesis: updates and implications at the solid tumor–immune interface. JCO Precis. Oncol. 7, e2300132 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Singh, A. & Balasubramanian, S. The crossroads of cancer therapies and clonal hematopoiesis. Semin. Hematol. 61, 16–21 (2024).

    Article  PubMed  Google Scholar 

  10. Takahashi, K., Nakada, D. & Goodell, M. Distinct landscape and clinical implications of therapy-related clonal hematopoiesis. J. Clin. Invest. https://doi.org/10.1172/JCI180069 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Evans, M. A. & Walsh, K. Clonal hematopoiesis, somatic mosaicism, and age-associated disease. Physiol. Rev. 103, 649–716 (2023).

    Article  CAS  PubMed  Google Scholar 

  12. Linder, D. & Gartler, S. M. Glucose-6-phosphate dehydrogenase mosaicism: utilization as a cell marker in the study of leiomyomas. Science 150, 67–69 (1965).

    Article  CAS  PubMed  Google Scholar 

  13. Beutler, E., Yeh, M. & Fairbanks, V. F. The normal human female as a mosaic of X-chromosome activity: studies using the gene for C-6-PD-deficiency as a marker. Proc. Natl Acad. Sci. USA 48, 9–16 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Busque, L. et al. Skewing of X-inactivation ratios in blood cells of aging women is confirmed by independent methodologies. Blood 113, 3472–3474 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Busque, L. et al. Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat. Genet. 44, 1179–1181 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Genovese, G. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 371, 2477–2487 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Guermouche, H. et al. High prevalence of clonal hematopoiesis in the blood and bone marrow of healthy volunteers. Blood Adv. 4, 3550–3557 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jacobs, K. B. et al. Detectable clonal mosaicism and its relationship to aging and cancer. Nat. Genet. 44, 651–658 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fabre, M. A. et al. The longitudinal dynamics and natural history of clonal haematopoiesis. Nature 606, 335–342 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Young, A. L., Challen, G. A., Birmann, B. M. & Druley, T. E. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat. Commun. 7, 12484 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xie, M. et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat. Med. 20, 1472–1478 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Comen, E. A. et al. Evaluating clonal hematopoiesis in tumor-infiltrating leukocytes in breast cancer and secondary hematologic malignancies. J. Natl Cancer Inst. 112, 107–110 (2020).

    Article  PubMed  Google Scholar 

  24. Kleppe, M. et al. Somatic mutations in leukocytes infiltrating primary breast cancers. NPJ Breast Cancer 1, 15005 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ptashkin, R. N. et al. Prevalence of clonal hematopoiesis mutations in tumor-only clinical genomic profiling of solid tumors. JAMA Oncol. 4, 1589–1593 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Coombs, C. C. et al. Identification of clonal hematopoiesis mutations in solid tumor patients undergoing unpaired next-generation sequencing assays. Clin. Cancer Res. 24, 5918–5924 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ruark, E. et al. Mosaic PPM1D mutations are associated with predisposition to breast and ovarian cancer. Nature 493, 406–410 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Bowman, R. L., Busque, L. & Levine, R. L. Clonal hematopoiesis and evolution to hematopoietic malignancies. Cell Stem Cell 22, 157–170 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bernstein, N. et al. Analysis of somatic mutations in whole blood from 200,618 individuals identifies pervasive positive selection and novel drivers of clonal hematopoiesis. Nat. Genet. 56, 1147–1155 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Weeks, L. D. & Ebert, B. L. Causes and consequences of clonal hematopoiesis. Blood 142, 2235–2246 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Abelson, S. et al. Prediction of acute myeloid leukaemia risk in healthy individuals. Nature 559, 400–404 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gallì, A. et al. Relationship between clone metrics and clinical outcome in clonal cytopenia. Blood 138, 965–976 (2021).

    Article  PubMed  Google Scholar 

  33. Weeks, L. D. et al. Prediction of risk for myeloid malignancy in clonal hematopoiesis. NEJM Evid. https://doi.org/10.1056/evidoa2200310 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mitchell, E. et al. Clonal dynamics of haematopoiesis across the human lifespan. Nature 606, 343–350 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pich, O., Reyes-Salazar, I., Gonzalez-Perez, A. & Lopez-Bigas, N. Discovering the drivers of clonal hematopoiesis. Nat. Commun. https://doi.org/10.1038/s41467-022-31878-0 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Osorio, F. G. et al. Somatic mutations reveal lineage relationships and age-related mutagenesis in human hematopoiesis. Cell Rep. 25, 2308–2316 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cagan, A. et al. Somatic mutation rates scale with lifespan across mammals. Nature 604, 517–524 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Spisak, N., de Manuel, M., Milligan, W., Sella, G. & Przeworski, M. The clock-like accumulation of germline and somatic mutations can arise from the interplay of DNA damage and repair. PLoS Biol. 22, e3002678 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vijg, J. From DNA damage to mutations: all roads lead to aging. Ageing Res. Rev. 68, 101316 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fuster, J. J. & Walsh, K. Somatic mutations and clonal hematopoiesis: unexpected potential new drivers of age-related cardiovascular disease. Circ. Res. 122, 523–532 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Feldman, T. et al. Recurrent deletions in clonal hematopoiesis are driven by microhomology-mediated end joining. Nat. Commun. 12, 2455 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vijg, J. et al. Mitigating age-related somatic mutation burden. Trends Mol. Med. 29, 530–540 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Aitken, S. J. et al. Pervasive lesion segregation shapes cancer genome evolution. Nature 583, 265–270 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Spencer Chapman, M. et al. Prolonged persistence of mutagenic DNA lesions in somatic cells. Nature https://doi.org/10.1038/s41586-024-08423-8 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Uryu, H. et al. Clonal evolution of hematopoietic stem cells after cancer chemotherapy. Preprint at bioRxiv https://doi.org/10.1101/2024.05.23.595594 (2024).

  46. Biechonski, S. et al. Attenuated DNA damage responses and increased apoptosis characterize human hematopoietic stem cells exposed to irradiation. Sci. Rep. 8, 6071 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Milyavsky, M. et al. A distinctive DNA damage response in human hematopoietic stem cells reveals an apoptosis-independent role for p53 in self-renewal. Cell Stem Cell 7, 186–197 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Mohrin, M. et al. Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis. Cell Stem Cell 7, 174–185 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yamashita, N. et al. Loss of Nudt15 thiopurine detoxification increases direct DNA damage in hematopoietic stem cells. Sci. Rep. 13, 11908 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Marshall, C. H. et al. Association of PARP inhibitor treatment on the prevalence and progression of clonal hematopoiesis in patients with advanced prostate cancer. Prostate 84, 954–958 (2024).

    Article  CAS  PubMed  Google Scholar 

  51. Kwan, T. T. et al. Preexisting TP53-variant clonal hematopoiesis and risk of secondary myeloid neoplasms in patients with high-grade ovarian cancer treated with rucaparib. JAMA Oncol. 7, 1772–1781 (2021).

    Article  PubMed  Google Scholar 

  52. Guryanova, O. A. et al. DNMT3A mutations promote anthracycline resistance in acute myeloid leukemia via impaired nucleosome remodeling. Nat. Med. 22, 1488–1495 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Caiado, F., Pietras, E. M. & Manz, M. G. Inflammation as a regulator of hematopoietic stem cell function in disease, aging, and clonal selection. J. Exp. Med. https://doi.org/10.1084/jem.20201541 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zhao, J., Ghimire, A. & Liesveld, J. Marrow failure and aging: the role of ‘inflammaging’. Best Pract. Res. Clin. Haematol. 34, 101283 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. SanMiguel, J. M. et al. Distinct tumor necrosis factor α receptors dictate stem cell fitness versus lineage output in Dnmt3a-mutant clonal hematopoiesis. Cancer Discov. 12, 2763–2773 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Abegunde, S. O., Buckstein, R., Wells, R. A. & Rauh, M. J. An inflammatory environment containing TNFα favors Tet2-mutant clonal hematopoiesis. Exp. Hematol. 59, 60–65 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Young, K. et al. Decline in IGF1 in the bone marrow microenvironment initiates hematopoietic stem cell aging. Cell Stem Cell 28, 1473–1482 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jakobsen, N. A. et al. Selective advantage of mutant stem cells in human clonal hematopoiesis is associated with attenuated response to inflammation and aging. Cell Stem Cell 31, 1127–1144 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Buttlar, A. Rehabilitation overseas. Integration of handicapped students at American community colleges (in German). Rehabilitation (Stuttg.) 27, 221–227 (1988).

    CAS  PubMed  Google Scholar 

  60. Caiado, F. et al. Aging drives Tet2+/− clonal hematopoiesis via IL-1 signaling. Blood 141, 886–903 (2023).

    Article  CAS  PubMed  Google Scholar 

  61. Hormaechea-Agulla, D. et al. Chronic infection drives Dnmt3a-loss-of-function clonal hematopoiesis via IFNγ signaling. Cell Stem Cell 28, 1428–1442 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cook, E. K., Luo, M. & Rauh, M. J. Clonal hematopoiesis and inflammation: partners in leukemogenesis and comorbidity. Exp. Hematol. 83, 85–94 (2020).

    Article  CAS  PubMed  Google Scholar 

  63. Gibson, C. J. et al. Clonal hematopoiesis associated with adverse outcomes after autologous stem-cell transplantation for lymphoma. J. Clin. Oncol. 35, 1598–1605 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yan, C. et al. Clonal hematopoiesis and therapy-related myeloid neoplasms after autologous transplant for Hodgkin lymphoma. J. Clin. Oncol. 42, 2415–2424 (2024).

    Article  CAS  PubMed  Google Scholar 

  65. Hasserjian, R. P., Steensma, D. P., Graubert, T. A. & Ebert, B. L. Clonal hematopoiesis and measurable residual disease assessment in acute myeloid leukemia. Blood 135, 1729–1738 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gibson, C. J. et al. Donor clonal hematopoiesis and recipient outcomes after transplantation. J. Clin. Oncol. 40, 189–201 (2022).

    Article  CAS  PubMed  Google Scholar 

  67. Kim, K. H. et al. Clonal hematopoiesis in the donor does not adversely affect long-term outcomes following allogeneic hematopoietic stem cell transplantation: result from a 13-year follow-up. Haematologica 108, 1817–1826 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Oshima, M. U. et al. Characterization of clonal dynamics using duplex sequencing in donor–recipient pairs decades after hematopoietic cell transplantation. Sci. Transl. Med. 16, eado5108 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Spencer Chapman, M. et al. Clonal dynamics after allogeneic haematopoietic cell transplantation. Nature 635, 926–934 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Oran, B. et al. Donor clonal hematopoiesis increases risk of acute graft versus host disease after matched sibling transplantation. Leukemia 36, 257–262 (2022).

    Article  CAS  PubMed  Google Scholar 

  71. DeZern, A. E. & Gondek, L. P. Stem cell donors should be screened for CHIP. Blood Adv. 4, 784–788 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Gibson, C. J. & Lindsley, R. C. Stem cell donors should not be screened for clonal hematopoiesis. Blood Adv. 4, 789–792 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jasra, S. et al. High burden of clonal hematopoiesis in first responders exposed to the World Trade Center disaster. Nat. Med. 28, 468–471 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bolton, K. L. et al. Clonal hematopoiesis is associated with risk of severe Covid-19. Nat. Commun. 12, 5975 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhou, Y. et al. Clonal hematopoiesis is not significantly associated with COVID-19 disease severity. Blood 140, 1650–1655 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zink, F. et al. Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. Blood 130, 742–752 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ganuza, M. et al. The global clonal complexity of the murine blood system declines throughout life and after serial transplantation. Blood 133, 1927–1942 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Weng, C. et al. Deciphering cell states and genealogies of human haematopoiesis. Nature 627, 389–398 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Desai, P. et al. Somatic mutations precede acute myeloid leukemia years before diagnosis. Nat. Med. 24, 1015–1023 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Aiman, W. et al. Efficacy and tolerability of isocitrate dehydrogenase inhibitors in patients with acute myeloid leukemia: a systematic review of clinical trials. Leuk. Res. 129, 107077 (2023).

    Article  CAS  PubMed  Google Scholar 

  81. Steensma, D. P. The clinical challenge of idiopathic cytopenias of undetermined significance (ICUS) and clonal cytopenias of undetermined significance (CCUS). Curr. Hematol. Malig. Rep. 14, 536–542 (2019).

    Article  PubMed  Google Scholar 

  82. Dutta, R. et al. Enasidenib drives human erythroid differentiation independently of isocitrate dehydrogenase 2. J. Clin. Invest. 130, 1843–1849 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Toma, M. M. et al. Clonal medicine targeting DNA damage response eradicates leukemia. Leukemia 38, 671–675 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Maifrede, S. et al. TET2 and DNMT3A mutations exert divergent effects on DNA repair and sensitivity of leukemia cells to PARP inhibitors. Cancer Res. 81, 5089–5101 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kahn, J. D. et al. PPM1D-truncating mutations confer resistance to chemotherapy and sensitivity to PPM1D inhibition in hematopoietic cells. Blood 132, 1095–1105 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Waarts, M. R. et al. CRISPR dependency screens in primary hematopoietic stem cells identify KDM3B as a genotype-specific vulnerability in IDH2- and TET2-mutant cells. Cancer Discov. 14, 1860–1878 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gozdecka, M. et al. Mitochondrial metabolism sustains DNMT3A-R882-mutant clonal haematopoiesis. Nature https://doi.org/10.1038/s41586-025-08980-6 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Hosseini, M. et al. Metformin reduces the competitive advantage of Dnmt3aR878H HSPCs. Nature https://doi.org/10.1038/s41586-025-08871-w (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Young, K. A. et al. Elevated mitochondrial membrane potential is a therapeutic vulnerability in Dnmt3a-mutant clonal hematopoiesis. Nat. Commun. 16, 3306 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Fuster, J. J. et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 355, 842–847 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Azrakhsh, N. A., Mensah-Glanowska, P., Sand, K. & Kittang, A. O. Targeting immune signaling pathways in clonal hematopoiesis. Curr. Med. Chem. 26, 5262–5277 (2019).

    Article  CAS  PubMed  Google Scholar 

  92. Shin, T.-H. et al. A macaque clonal hematopoiesis model demonstrates expansion of TET2-disrupted clones and utility for testing interventions. Blood 140, 1774–1789 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Svensson, E. C. et al. TET2-driven clonal hematopoiesis and response to canakinumab: an exploratory analysis of the CANTOS randomized clinical trial. JAMA Cardiol. 7, 521–528 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Grebe, A., Hoss, F. & Latz, E. NLRP3 inflammasome and the IL-1 pathway in atherosclerosis. Circ. Res. 122, 1722–1740 (2018).

    Article  CAS  PubMed  Google Scholar 

  95. Kapadia, C. D. et al. Clonal dynamics and somatic evolution of haematopoiesis in mouse. Nature 641, 681–689 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Boucai, L. et al. Radioactive iodine-related clonal hematopoiesis in thyroid cancer is common and associated with decreased survival. J. Clin. Endocrinol. Metab. 103, 4216–4223 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Tian, R. et al. Clonal hematopoiesis and risk of incident lung cancer. J. Clin. Oncol. 41, 1423–1433 (2023).

    Article  CAS  PubMed  Google Scholar 

  98. Tiedje, V. et al. Targetable treatment resistance in thyroid cancer with clonal hematopoiesis. Preprint at bioRxiv https://doi.org/10.1101/2024.10.10.617685 (2024).

  99. Diplas, B. H. et al. Clinical importance of clonal hematopoiesis in metastatic gastrointestinal tract cancers. JAMA Netw. Open 6, e2254221 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Liu, X. et al. CHIP-associated mutant ASXL1 in blood cells promotes solid tumor progression. Cancer Sci. 113, 1182–1194 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gibson, C. J. et al. Clonal hematopoiesis in young women treated for breast cancer. Clin. Cancer Res. 29, 2551–2558 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Morganti, S. et al. Prevalence, dynamics, and prognostic role of clonal hematopoiesis of indeterminate potential in patients with breast cancer. J. Clin. Oncol. https://doi.org/10.1200/jco.23.01071 (2024).

    Article  PubMed  Google Scholar 

  103. Uyanik, B. et al. Inhibition of the DNA damage response phosphatase PPM1D reprograms neutrophils to enhance anti-tumor immune responses. Nat. Commun. 12, 3622 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mukohara, F. et al. Somatic mutations in tumor-infiltrating lymphocytes impact on antitumor immunity. Proc. Natl Acad. Sci. USA 121, e2320189121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Severson, E. A. et al. Detection of clonal hematopoiesis of indeterminate potential in clinical sequencing of solid tumor specimens. Blood 131, 2501–2505 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Li, S. et al. TET2 promotes anti-tumor immunity by governing G-MDSCs and CD8+ T-cell numbers. EMBO Rep. 21, e49425 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pan, W. et al. The DNA methylcytosine dioxygenase Tet2 sustains immunosuppressive function of tumor-infiltrating myeloid cells to promote melanoma progression. Immunity 47, 284–297 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Feng, Y. et al. Hematopoietic-specific heterozygous loss of Dnmt3a exacerbates colitis-associated colon cancer. J. Exp. Med. https://doi.org/10.1084/jem.20230011 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Nguyen, Y. T. M. et al. Tet2 deficiency in immune cells exacerbates tumor progression by increasing angiogenesis in a lung cancer model. Cancer Sci. 112, 4931–4943 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bolton, K. L. et al. Managing clonal hematopoiesis in patients with solid tumors. J. Clin. Oncol. 37, 7–11 (2019).

    Article  CAS  PubMed  Google Scholar 

  111. Hsu, J. I. et al. PPM1D mutations drive clonal hematopoiesis in response to cytotoxic chemotherapy. Cell Stem Cell 23, 700–713 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Prinzing, B. et al. Deleting DNMT3A in CAR T cells prevents exhaustion and enhances antitumor activity. Sci. Transl. Med. 13, eabh0272 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Fraietta, J. A. et al. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature 558, 307–312 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Nobles, C. L. et al. CD19-targeting CAR T cell immunotherapy outcomes correlate with genomic modification by vector integration. J. Clin. Invest. 130, 673–685 (2020).

    Article  CAS  PubMed  Google Scholar 

  115. Tolcher, A. W. et al. Phase I study of GS-3583, an FMS-like tyrosine kinase 3 agonist Fc fusion protein, in patients with advanced solid tumors. Clin. Cancer Res. 30, 2954–2963 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Dillon, L. W. et al. DNA sequencing to detect residual disease in adults with acute myeloid leukemia prior to hematopoietic cell transplant. JAMA 329, 745–755 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Aggarwal, C. et al. Assessment of tumor mutational burden and outcomes in patients with diverse advanced cancers treated with immunotherapy. JAMA Netw. Open 6, e2311181 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Bolton, K. L. et al. The clinical management of clonal hematopoiesis: creation of a clonal hematopoiesis clinic. Hematol. Oncol. Clin. North Am. 34, 357–367 (2020).

    Article  PubMed  Google Scholar 

  119. Haque, T. et al. A blueprint for pursuing therapeutic interventions and early phase clinical trials in clonal haematopoiesis. Br. J. Haematol. 206, 416–427 (2025).

    Article  PubMed  Google Scholar 

  120. Steensma, D. P. & Bolton, K. L. What to tell your patient with clonal hematopoiesis and why: insights from 2 specialized clinics. Blood 136, 1623–1631 (2020).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J.J.T. is supported by the National Institutes of Health (grants R01DK118072, R01AG069010 and U01AG077925). J.J.T. is a scholar of the Leukemia & Lymphoma Society. X.C. holds a scholar award from The Jackson Laboratory. R.L.B. is supported by the National Cancer Institute (R00CA248460) and the Leukemia Research Foundation. R.L.B. is a scholar of the American Society of Hematology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robert L. Bowman or Jennifer J. Trowbridge.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cancer thanks Liran Shlush, Paresh Vyas and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, X., Bowman, R.L. & Trowbridge, J.J. Clonal hematopoiesis in myeloid malignancies and solid tumors. Nat Cancer 6, 1133–1144 (2025). https://doi.org/10.1038/s43018-025-01014-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43018-025-01014-0

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载