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Abstract

Background Measuring vital signs plays a key role in both patient care and wellness, but can

be challenging outside of medical settings due to the lack of specialized equipment.

Methods In this study, we prospectively evaluated smartphone camera-based techniques for

measuring heart rate (HR) and respiratory rate (RR) for consumer wellness use. HR was

measured by placing the finger over the rear-facing camera, while RR was measured via a

video of the participants sitting still in front of the front-facing camera.

Results In the HR study of 95 participants (with a protocol that included both measurements

at rest and post exercise), the mean absolute percent error (MAPE) ± standard deviation of

the measurement was 1.6% ± 4.3%, which was significantly lower than the pre-specified goal

of 5%. No significant differences in the MAPE were present across colorimeter-measured

skin-tone subgroups: 1.8% ± 4.5% for very light to intermediate, 1.3% ± 3.3% for tan and

brown, and 1.8% ± 4.9% for dark. In the RR study of 50 participants, the mean absolute error

(MAE) was 0.78 ± 0.61 breaths/min, which was significantly lower than the pre-specified

goal of 3 breaths/min. The MAE was low in both healthy participants (0.70 ± 0.67 breaths/

min), and participants with chronic respiratory conditions (0.80 ± 0.60 breaths/min).

Conclusions These results validate the accuracy of our smartphone camera-based techni-

ques to measure HR and RR across a range of pre-defined subgroups.
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Plain language summary
Accurate measurement of the num-

ber of times a heart beats per minute

(heart rate, HR) and the number of

breaths taken per minute (respiratory

rate, RR) is usually undertaken using

specialized equipment or training.

We evaluated whether smartphone

cameras could be used to measure

HR and RR. We tested the accuracy

of two computational approaches

that determined HR and RR from the

videos obtained using a smartphone.

Changes in blood flow through the

finger were used to determine HR;

similar results were seen for people

with different skin tones. Chest

movements were used to determine

RR; similar results were seen between

people with and without chronic lung

conditions. This study demonstrates

that smartphones can be used to

measure HR and RR accurately.
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Measurement of heart rate (HR) and respiratory rate
(RR), two of the four cardinal vital signs—HR, RR,
body temperature, and blood pressure—is the starting

point of the physical assessment for both health and wellness.
However, taking these standard measurements via a physical
examination becomes challenging in telehealth, remote care, and
consumer wellness settings1–3. In particular, the recent COVID-
19 pandemic has accelerated trends towards telehealth and
remote triage, diagnosis, and monitoring4,5. Although specialized
devices are commercially available for consumers and have the
potential to motivate healthy behaviors6, their cost and relatively
low adoption limit general usage.

On the other hand, with smartphone penetration exceeding
40% globally and 80% in the United States7, up to 3.8 billion
individuals already have access to a myriad of sensors and
hardware (video cameras with flash, accelerometers, gyroscope,
etc.) that are changing the way people interact with each other
and their environments. A combination of these same sensors
together with novel computer algorithms can be used to measure
vital signs via consumer-grade smartphones8–12. Indeed, several
such mobile applications (“apps”) are available, some with hun-
dreds of thousands of installs13. However, these apps seldom
undergo rigorous clinical validation for accuracy and general-
izability to important populations and patient subgroups.

In this work, we present and validate two algorithms that make
use of smartphone cameras for vital sign measurements. The first
algorithm leverages photoplethysmography (PPG) acquired using
smartphone cameras for HR measurement. PPG signals are
recorded by placing a finger over the camera lens, and the color
changes captured in the video are used to determine the oscilla-
tion of blood volume after each heart beat14. In the second
algorithm, we leverage upper-torso videos obtained via the front-
facing smartphone camera to track the physical motion of
breathing to measure RR. Herein, we describe both the details of
the algorithms themselves and report on the performance of these
two algorithms in prospective clinical validation studies. For the
HR study, we sought to demonstrate reliable and consistent
accuracy on diverse populations (in terms of objectively measured
skin tones, ranging from very light to dark skin), whereas for the
RR study, we aimed to demonstrate robust performance in sub-
groups with and without chronic respiratory conditions. This
study confirms our smartphone camera-based techniques are
accurate in measuring HR and RR across a range of predefined
subgroups.

Methods
We conducted two separate prospective studies (Table 1) to
validate the performance of two smartphone-based algorithms,
one for measurement HR and the other for RR measurement
(Fig. 1). The user interfaces of the two custom research apps are
shown in Supplementary Fig. 1. The HR algorithm measured
PPG signals via videos of the finger placed over the rear camera,
while the RR algorithm measured movements of the chest via
videos captured from the front camera. Next, we provide more
details on each algorithm and corresponding study.

HR measurement
Algorithm description. Prior work in computer vision to extract
heart rate from RGB (red-green-blue) video signals has leveraged
manually extracted features in PPG signals from the finger for
arrhythmia detection15, ballistocardiographic movements from
fingertips16, red-channel PPG from fingertip videos17, and the
relationship between RGB channels18.

Our method estimates HR by optically measuring the PPG
waveform from participants’ fingertips and then extracting the

dominant frequency. First, several rectangular regions of interest
(ROI) were manually selected from the video frames (linear RGB
at 15 frames per second and at a resolution of 640 × 480 pixels).
The chosen ROIs were the full-frame, the left half, the right half,
the top half, and the bottom half of the frames. Since camera
pixels are illuminated non-homogeneously, signal strength can
have spatial variations across pixels19. Our method simulta-
neously analyzes different ROIs to identify one with the
greatest SNR.

Pixels in each ROI were averaged per channel to reduce the
effects of sensor and quantization noise, similar to prior work18.
The pulsatile blood volume changes were present as the AC
components in these smoothed signals. We then weighted the
three RGB waveforms to predict a single PPG waveform (after an
empirical grid search across all 3 channels: RGB, we arrived at
weights 0.67, 0.33, and 0, respectively) for each ROI.

The resulting PPG waveforms were bandpass filtered to remove
low- and high-frequency noise unlikely to be valid HR. Filter cut-
off frequencies corresponded to a low of 30 beats/min and a high
of 360 beats/min. Next, large amplitude changes in PPGs due to
motion were suppressed by limiting maximum allowed changes
in amplitudes to 3 times of the moving average value. Then,
frequency-domain representations of PPGs were computed using
the Fast Fourier Transform (FFT), from which we identified the
dominant frequencies with maximum power. Because the PPG
signals are periodic with multiple harmonics, the powers of the
base frequencies were computed by summing the powers of their
first, second, and third harmonics. SNRs were estimated for each
ROI by computing the ratio between the power of the dominant

Table 1 Baseline characteristics of the study participants.

Heart rate
(HR) study

Respiratory rate
(RR) study

No. participants analyzed 95 50
No. recordings 352 50 (for each algorithm

version*)
Age (mean ± standard
deviation)

41.8 ± 15.0 50.0 ± 16.0

Age groups
<40 years 41 (43%) 17 (34%)
40–59 years 39 (41%) 21 (42%)
≥60 years 15 (16%) 12 (24%)

No. female (%) 71 (75%) 26 (52%)
No. male (%) 24 (25%) 24 (48%)
Race/ethnicity: n, %
White, non-Hispanic 25 (26%) 18 (36%)
White, Hispanic 0 (0%) 22 (44%)
Black, non-Hispanic 61 (64%) 6 (12%)
Black, Hispanic 0 (0%) 1 (2%)
Asian/pacific islander 7 (7%) 3 (6%)
Multiple races, non-
Hispanic

1 (1%) 0 (0%)

Multiple races, Hispanic 1 (1%) 0 (0%)
Measured skin tone**: n (%)
1 (Fitzpatrick types 1–3) 31 (33%) N/A
2 (Fitzpatrick
types 4–5)

32 (34%)

3 (Fitzpatrick type 6) 32 (34%)
Chronic respiratory conditions: n (%)
None N/A 10 (20%)
Asthma 33 (66%)
COPD 4 (8%)
Both 3 (6%)

COPD chronic obstructive pulmonary disease.
*RR was measured twice, once for each one of two algorithm versions (see Methods).
**Measurements were done on the cheek using a Pantone RM200QC Spectro (see Methods).
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frequency and the powers of non-dominant frequencies on a
logarithmic scale. ROIs were filtered to only those with a SNR
≥0 dB, and the dominant frequency of the ROI with the highest
SNR was reported. If no such ROI existed, no HR was reported.
Further details are provided in Supplementary Methods.

Study design and participants. We performed a prospective
observational clinical validation study to assess the accuracy of
the study algorithm in estimating HR in individuals of diverse
skin tones (Supplementary Fig. 1a). Participants were enrolled at
a clinical research site (Meridian, Savannah, GA) from October
2020 to December 2020. Study eligibility criteria were limited to
excluding participants with significant tremors or inability to
perform physical activity. The inclusion/exclusion criteria are
detailed in Supplementary Table 1a. Study enrollment was stra-
tified into three skin-tone subgroups (mapped to Fitzpatrick skin
types20; see Supplementary Table 2) to ensure broad repre-
sentation: (1) types 1–3 (very light, light, and intermediate); (2)
types 4–5 (tan and brown), and (3) type 6 (dark). Skin tone was
objectively measured from the participants’ cheek skin using an
RM200QC Spectro colorimeter (X-Rite, Grand Rapids, MI).
Evidence suggests that darker skin tone is frequently under-
represented in medical datasets21, and that medical devices using
optical sensors may be less accurate in those individuals22–24.
Therefore, the darkest skin-tone subgroup was intentionally
oversampled to ensure the algorithm’s unbiased performance
over various skin tones. Informed consent was obtained from all
study participants in accordance with the tenets of the Declara-
tion of Helsinki. The study protocol was approved by Advarra
IRB (Columbia, MD; protocol no. Pro00046845). The clinical
research site followed standard safety precautions for COVID-19
in accordance with the Centers for Disease Control and Pre-
vention guidelines.

Data collection. Each participant underwent four 30-s data col-
lection episodes with their index finger (of a hand of their choice)
held directly over the study phone camera. Three of the 30-s
episodes were collected at rest under various ambient brightness/
lighting conditions: (1) with camera flash on and under normal
ambient light, (2) with the flash off and under normal ambient
light, and (3) with the flash off and under dim light. The fourth
episode was collected post-exercise. In the original protocol,
participants were instructed to ride a stationary bicycle for 30 s as
strenuously as possible against light to medium resistance. After
enrolling 37 participants, the exercise protocol was modified
(with an IRB amendment) to achieve higher participant HR:
participants were encouraged to achieve 75% of their maximal
HR, which was calculated by subtracting the participant’s age
from 220 beats/min. The exercise was completed either when the
goal HR was achieved or when the participant asked to stop. The
data were collected with the flash off and under normal ambient
light. Lighting conditions were controlled using two overhead and
one front light-emitting diode (LED) lights. The brightness level
of the study environment was measured by a Lux meter (LT300
Light Meter, Extech, Nashua, NH) prior to each study. Measured
brightness values were between 160 and 200 Lux for normal
ambient light, and between 95 and 110 Lux for dim light.

The study was conducted using a mobile app deployed to a
Pixel 3 smartphone running Android 10 (Google LLC,
Mountain View, CA). HR estimation using the app was
generally completed by the study participants following the
in-app instructions, with the coordinators providing feedback
on usage when needed. The reference HR was measured
simultaneously during each data collection episode using a
Masimo MightySat® (Masimo, Irvine, CA), which is US Food
and Drug Administration-cleared for fingertip measurement of
pulse rate25. The measurements were conducted in accordance

Fig. 1 Smartphone-based monitoring of two key vital signs: heart rate (HR) and respiratory rate (RR). Setup of how measurements are taken: with the
finger over the rear-facing camera for HR (upper panel) and using a video of the participant via the front-facing camera for RR (lower panel). Study design:
to ensure generalization across skin tones for HR (n= 95) and generalization to participants with chronic respiratory conditions (chronic obstructive
pulmonary disease and asthma) for RR (n= 50). Skin-tone subgroup 1 (n= 31) corresponds to Fitzpatrick skin types 1–3 (very light, light, and
intermediate); subgroup 2 (n= 32) corresponds to types 4–5 (tan and brown); and subgroup 3 (n= 32) corresponds to type 6 (dark). RR study included
healthy participants (n= 10) and participants with chronic respiratory conditions (n= 40). Metrics: the main measurements were mean absolute percent
error (MAPE) for HR and mean absolute error (MAE) for RR. In the boxplots, the orange lines and box edges indicate the quartiles; whiskers indicate 1.5
times the interquartile range beyond the upper and lower quartiles; dots indicate individual data points (average percent error or absolute error). For the HR
study, five outlier data points in the “overall” group extend beyond the axes (>10%) and are not shown; these outliers are distributed across the three skin
tone subgroups (1, 2, and 2, respectively). All data points are shown for the RR study.
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with the manufacturer’s manual and taken at the end of each
episode.

Statistics and reproducibility. Each participant contributed up to
three HR measurements at rest (with different lighting condi-
tions), and up to one post-exercise. Measurements were paired
observations: the algorithm-estimated HR and the reference HR
from the pulse oximeter. For each algorithm measurement, up to
three tries were allowed, and the number of tries required was
recorded. The baseline characteristics of the participants in whom
a valid measurement for HR could not be obtained were com-
pared to those of participants for whom a valid measurement was
obtained using Fisher’s exact test. A paired measurement was
dropped if either the algorithm estimation or reference mea-
surement failed. The absolute error of each paired measurement
was calculated as the absolute value of the difference between the
algorithm-estimated and reference HR values. The MAE was the
mean value of all absolute errors. Similarly, the absolute error
from each paired measurement was divided by the reference value
for that measurement and multiplied by 100 to produce the
absolute percentage error. The MAPE was the mean value for all
absolute percent error values. The standard deviation of MAPE
was calculated; no adjustment for multiple observations was made
since the effects of clustering were negligible.

The MAPE was the primary study outcome, as recommended
by the current standards for HR monitoring devices26. We also
computed the standard deviation and 95th percentiles. Sign tests
were used to determine whether the absolute percentage errors
were significantly <5%, both for the entire group of participants
and the three skin-tone subgroups; data from individual data
windows were analyzed separately. Bland–Altman plots were
used to visualize the agreement between the estimated values and
the reference measurements and assess for any proportional bias
(trends in the error with increasing values)27. The mean
differences were derived from the random-effects model con-
sidering the repeated measurement nature of the samples. For
samples that did not follow a normal distribution based on a
Shapiro-Wilk test, the 2.5th and 97.5th percentiles were provided
as the limits of agreement. The subgroup analysis across the three
skin-tone subgroups was pre-specified.

Sample size calculation. HR data collection was planned for ~100
participants. Enrollment up to a maximum of 150 participants
was allowed as we anticipated that some enrolled participants
would be excluded prior to contributing HR data because they
failed to meet the required skin tone distribution or because they
were not able to exercise. Requirements for participant enroll-
ment termination included ≥60 paired HR measurements in the
dark skin tone subgroup and ≥20% of the post-exercise reference
HR >100 beats/min. The study hypothesis was that MAPE was
<5% in all of the three skin-tone subgroups. To estimate the
sample size required for the study, we first conducted an IRB-
approved feasibility study with a different set of 55 participants
and similar measurements both at rest and post-exercise. In that
study, the MAPE ± standard deviation was 0.91 ± 3.68%.
Assuming double the mean and SD (i.e., 1.82 and 7.36%,
respectively), a minimum of two paired measurements per par-
ticipant, a skin-tone subgroup of ~25 participants, and some
dropout from incomplete data, the power to detect a MAPE >5%
was >0.8.

RR measurement
Algorithm description. Prior work in computer vision and sensors
to extract RR from RGB video signals relied on changes in color
intensities at specific anatomical points28,29, tracking head

motions30,31, estimating optical flow along image gradients32, or
factorizing the vertical motion matrix33.

Our contactless method estimates RR by performing motion
analysis in an ROI of the video stream and requires that the face
and upper torso be in the video frame. A previously described
face detector34 is used to obtain a set of face landmarks defining
the contour of the face, and the bounding box for the face is
computed from the face contour. Subsequently, an ROI around
the upper torso is computed by extrapolating from the bounding
box of the face. A simple extrapolation method that uses just
constant coefficients was shown to be robust to variations in head
and torso size. The height and width of the torso ROI is set to 1.4
and 2.5 times the face ROI height and width, respectively. At this
point, the upper torso ROI is an RGB image. To attain a frame
rate of 15 frames per second this RGB image is converted to a
luma-only image and resampled to a size of 15k pixels while
maintaining the same aspect ratio.

The main challenge was that variations in the video due to
respiratory motions are hard to distinguish from noise. We build
on Eulerian, phase-based motion processing35 that is particularly
suited for analyzing subtle motions. In each video frame, the
position at each pixel was represented by the phase of spatially
localized sinusoids in multiple scales (frequencies). To aggregate
the information across scales and to obtain an intuitive
representation of motion, we then transformed the spatial phases
into optical flow by linearly approximating the position implied
by each phase coefficient and averaging across scales. Using the
Halide high-performance image library36, we were able to speed
up the phase and optical flow computation to achieve real-time
processing (1–4 ms per frame on Pixel 3a and Pixel 4 mobile
devices).

It turns out that for estimating the respiratory rate it is
sufficient to analyze only the vertical component of the optical
flow, so only the vertical component was processed in the
subsequent steps. Ensembling was then used to improve the
predictive performance. A spectral-spatial ensemble was built in
the following way. The respiratory ROI, together with the four
quadrants obtained by equally subdividing the ROI defined five
regions over which the vertical component of the optical flow was
averaged. This resulted in five respiratory waveforms. Next,
frequency-domain representations for each of these respiratory
waveforms were computed via FFT, from which power spectra
were computed. The number of samples in the rolling FFT
transform is 900 which provides sufficient resolution for the
respiratory rate in the [6, 60] breaths/min range at a video rate of
15 frames per second. The power spectra corresponding to the
five regions were then aggregated (added) to obtain a final
ensembled power spectrum. Bandpass-filtering was performed to
remove low and high frequencies unlikely to represent valid RRs.
Filter cut-off frequencies corresponded to a low of 6 breaths/min
and a high of 60 breaths/min. The maximum power frequency
and the corresponding SNR value were computed from the
ensembled power spectrum. The waveform corresponding to the
entire ROI is used for displaying the breathing pattern to the user
in the mobile app.

Often there was insufficient periodicity in the respiratory
waveform (e.g., the participant briefly held their breath or
changed their respiratory rate within the time window used for
analyzing the waveform). To increase the robustness of RR
estimation, the algorithm falls back on a time-domain estimation
method based on counting zero crossings of the waveform
corresponding to the entire ROI whenever the SNR obtained via
the FFT-based method was lower than a certain threshold. We
tested two versions of the algorithm, differing only in terms of
this threshold: SNR <−6.0 dB (version A) and SNR <−4.0 dB
(version B). The higher value for the threshold in version B
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invoked the time-domain estimation method more often, which
was hypothesized to improve accuracy by improving robustness
to irregular breathing.

Study design and participants. We performed a prospective
observational clinical validation study to assess the accuracy of
the study algorithm in measuring the RR in healthy adults and
patients with chronic respiratory conditions (Supplementary
Fig. 1b). Participants were enrolled at a clinical research site
(Artemis, San Diego, CA) between June 2020 and July 2020.
Chronic respiratory conditions included moderate or severe
COPD and asthma that was not well-controlled based on specific
study criteria (Supplementary Table 1b). Also, participants with
significant tremors were excluded. Further details and criteria are
presented in Supplementary Table 1b. Informed consent was
obtained from all study participants in accordance with the tenets
of the Declaration of Helsinki. The study protocol was approved
by Aspire IRB (now WCG IRB, Puyallup, WA; protocol no.
20201594). The clinical research site followed standard safety
precautions for COVID-19 in accordance with the Centers for
Disease Control and Prevention guidelines.

Data collection. Each participant underwent 30 s of data collection
using a Pixel 4 smartphone running Android 10 (Google LLC,
Mountain View, CA). The two algorithm versions (A and B) were
tested sequentially. The participants followed the study protocol
via instructions from the study app, without intervention from
the study staff. Participants were prompted to prop the study
phone on a table using provided common household items, such
that the upper body was centered in the video capture (Fig. 1).
There were no specific requirements on the type of clothing worn
during the study or additional custom lighting equipment. The
in-app instructions guided the participants to wait several min-
utes after any active movement. The participants were encour-
aged to stay comfortable and breathe normally during 30 s of
measurement.

During the data collection, RR was manually counted and
recorded by two research coordinators. The two observers
counted the number of breaths independently and were blinded
to the algorithm-estimated results. The agreement between the
two measurements was high (Pearson correlation coefficient:
0.962; mean difference: 0.48 ± 0.88 breaths/min; range, 0–4). The
mean of the two human-measured RRs rounded off to the nearest
integer, was taken to be the reference RR.

Statistics and reproducibility. Each participant contributed a sin-
gle pair of measurements for each algorithm version, and the
MAE was used as the primary evaluation metric. The study
hypothesis was that MAE would be <3 breaths/min. One-sample
t-tests were done to determine whether the MAE was statistically
significantly <3 breaths/min. A prespecified subgroup analysis
was also performed, stratified by history of chronic respiratory
conditions. In addition, post hoc subgroup analyses were per-
formed for age and race/ethnicity subgroups. Bland–Altman plots
were used to analyze further for any trends in errors; for
Bland–Altman analyses of differences that were not normally
distributed the limits of agreement were based on the 2.5th and
97.5th percentiles of the distribution. Differences between the two
algorithm versions were compared using a paired t-test.

To estimate the sample size required for the study, we first
conducted an IRB-approved feasibility study with 80 healthy
adults. Based on that MAE ± standard deviation (0.96 ± 0.72
breaths/min), a sample size of 50 participants was estimated to
provide a power of >0.99 to detect an MAE <3. The power was
also >0.99 for both the subgroup of ten healthy participants and
the subgroup of 40 with chronic respiratory conditions. If the

MAE and standard deviation were doubled, the power would be
>0.99, 0.71, and >0.99, respectively, for the full sample, healthy
participants, and those with chronic respiratory conditions.

User experience survey. The participants were surveyed about
their experience using the app. The questions covered their ease
of setting up the phone at the desired angle to capture their face/
torso; the clarity of the instructions; their comfort in using the
app to assess their general wellness; their comfort in teaching
someone else how to use the app; and their expected comfort in
using the app several times a day (Supplementary Table 7).

Reporting summary. Further information on research design is
available in the Nature Research Reporting Summary linked to
this article.

Results
We conducted two separate prospective studies to validate the
performance of smartphone-based HR and RR measurements
(Fig. 1). The user interfaces of the two custom research apps are
shown in Supplementary Fig. 1. The HR algorithm used PPG
signals measured from the study participants placing their finger
over the rear camera, and the enrollment for the corresponding
validation study was stratified to ensure diversity across objec-
tively measured skin tones. The RR algorithm used video captures
of the face and upper torso, and the enrollment for the corre-
sponding validation study was stratified to capture participants
with and without chronic respiratory conditions.

Heart rate measurement. A total of 101 participants were
enrolled. Study eligibility criteria are described in Methods
(Supplementary Table 1a). After excluding one participant who
was found to have an exclusion criterion (pregnancy), there were
100 valid enrollees. Among these, three were withdrawn due to
skin tone distribution requirements, and two were withdrawn
during data collection due to difficulty in data collection (failure
to follow the instruction on holding the phone and a health
condition that prevents us from collecting reference HR). Thus,
95 participants completed data collection (Supplementary
Fig. 2a). The participants had a mean age of 41.8 years, 75% were
female, and skin-tone subgroups were evenly distributed as
planned: 33% were subgroup 1 (very light, light, and inter-
mediate), 34% were subgroup 2 (tan and brown), and 34% were
subgroup 3 (dark) (Table 1). Skin tone measurement and cate-
gorization criteria are described in Methods and Supplementary
Table 2.

From these participants, 379 total recordings were attempted.
A valid HR was successfully obtained (see details on signal-to-
noise ratio [SNR] in Methods) in 361 cases (95.3%). The success
rate increased with retries up to three times: 316 measurements
(83.4%) were successful on the first try, another 31 measurements
(cumulative 91.6%) on the second try, and another 14 measure-
ments (cumulative 95.3%) on the third try. The baseline
characteristics of the 14 participants for whom HR values were
not successfully reported by the study app for at least one
measurement (due to low SNR) did not differ significantly from
the remaining participants (Supplementary Table 3). In addition,
a corresponding valid reference HR could not be obtained for
nine recordings from four participants due to technical error. The
remaining 352 recordings with paired valid reference HR
contributed to the final analysis (Supplementary Fig. 2a). The
average reference HR was 79.8 ± 14.6 beats/min overall,
75.5 ± 11.2 beats/min at rest, and 93.9 ± 15.4 beats/min post-
exercise (Supplementary Table 4).
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Compared to the reference HR, the mean absolute percentage
error (MAPE) of the overall study population was 1.63%. The
MAPE values for all four data collection windows (including
three at rest and one post-exercise measurement) were signifi-
cantly lower than the prespecified study target of 5% (p < 0.001
for all comparisons). The MAPE showed a left-skewed distribu-
tion with a long tail (median, 1.14%; range, 0.0–50.6%). The
MAPE by skin-tone subgroup was 1.77% for subgroup 1, 1.32%
for subgroup 2, and 1.77% for subgroup 3. The MAPE values by
skin-tone subgroups were all significantly <5% for each data
window (all P values <0.001) (Fig. 1 and Supplementary Table 4).
We also found no statistically significant variation in MAPE
across the three different lighting conditions.

Figure 2 shows the Bland–Altman plots for comparing the
algorithm-estimated HR with the reference HR for the overall
population and the three subgroups. Most observations (344/352,
97.8%) were within 5 beats/min. Supplementary Fig. 3 shows the
Bland–Altman plots for HR stratified by at-rest versus post-exercise.

Respiratory rate measurement. A total of 50 participants were
enrolled in the RR study, including ten healthy participants and
40 participants with chronic respiratory conditions, i.e., chronic
obstructive pulmonary disease (COPD) or asthma (Supplemen-
tary Table 1b and Supplementary Figure 2b). All of the 50 study
participants contributed to the final analysis. Self-identified
baseline characteristics are presented in Table 1. The mean age
was 50 years old; 80% self-identified as White, 14% as Black or
African American, and 46% as having Hispanic or Latino eth-
nicity. The average reference RR was 15.3 ± 3.7 breaths/min
(Supplementary Table 5).

Both versions of the algorithm successfully estimated RR in all of
the study subjects. The mean absolute error (MAE) in the overall
study population was 0.84 ± 0.97 and 0.78 ± 0.61 breaths/min for
algorithm versions A and B, respectively (Fig. 1 and Supplementary
Table 5), which were significantly lower than the prespecified
threshold of 3 breaths/min (p < 0.001 for both). Each subgroup also
showed MAE values significantly lower than the threshold:
algorithm version A, 0.60 ± 0.52 breaths/min (p < 0.001) for the
healthy cohort and 0.90 ± 1.05 breaths/min (p < 0.001) for the
cohort with chronic respiratory conditions; algorithm version B,
0.70 ± 0.67 breaths/min (p < 0.001) and 0.80 ± 0.60 breaths/min
(p < 0.001), respectively. No statistically significant differences
across age and race subgroups were seen (Supplementary Table 6).

Figure 3 shows the Bland–Altman plots for comparing the
algorithm-estimated RR with the reference RR for the overall
population and the two subgroups. All observations were within 2
breaths/min of the reference RR for algorithm version B, while
one observation was >2 breaths/min of the reference RR for
version A. The accuracy of the two algorithm versions did not
differ significantly (p= 0.70).

Supplementary Fig. 4 shows the results from a user experience
survey (see Methods) of the study participants. More than 90% of
responses were classified as positive, with participants reporting
anticipated ease in setting up within a home environment, ease in
following the instructions in the app, and comfort using the app
to assess general wellness.

Discussion
We report the results of two prospective clinical studies validating
the performance of smartphone algorithms to estimate HR and

Fig. 2 Bland–Altman plots for the heart rate (HR) study. Plots from the full study (a) followed by subgroups based on skin type (b–d) (n= 352 for all [a],
119 for subgroup 1 [b], 113 for subgroup 2 [c], and 120 for subgroup 3[d]). The reference HR was obtained from a pulse oximeter (see Methods). Dots
represent individual participants; blue lines indicate the mean difference; red lines indicate the limits of agreement (based on the 2.5th and 97.5th
percentiles).
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RR. Both algorithms showed high accuracy compared to the
reference standard vital sign measurements, with the mean
MAPE for HR <2% and the mean MAE for RR <1 breaths/min
(both significantly below the prespecified targets). In addition, the
HR estimation was robust across the full range of skin tones, and
the RR estimation generalized to participants with common
chronic respiratory conditions: COPD and asthma.

Only a limited number of previous smartphone apps have
undergone clinical evaluation for HR measurement37. The accuracy
of the HR algorithm in this study is especially notable. An MAE less
than 5 beats/min or a MAPE less than 10% are standard accuracy
thresholds for HR monitors38,39. The MAE of 1.32 beats/min in HR
is lower than that reported for smartphone apps (2.0 to 8.1 beats/
min)37 and for contemporary wearable devices (4.4 to 10.2 beats/
min at rest)40, albeit with several differences in study design and
population. The MAPE of 1.63% is comparable to the performance
of current wearable devices. Shcherbina et al. tested six wrist-worn
devices and reported a median error <5% for each across various
activities and a median error of 2.0% for the best-performing
device41. Because skin tone can be a potential source of bias in
medical devices22–24, and the accuracy of PPG-based HR estimation
can be affected by melanin’s light-absorbing property40,42, we
enrolled participants with diverse skin tones to validate the
robustness of our HR estimation algorithm across skin tones.

The authors are unaware of any smartphone-based RR mea-
surement apps that have undergone rigorous clinical validation.
One previous study tested an algorithm with a similar concept to
ours but enrolled only ten healthy subjects43. For consumer-grade
RR monitoring devices, there is no well-accepted accuracy
standard26. Our MAE of 0.78 breaths/min is comparable to that of
professional healthcare devices, which have reported accuracy of
±2–3 breaths/min44–47. One important strength of our approach is
determining RR from direct measurement of respiratory motion,
rather than trying to derive RR from the variation of PPG-based

interbeat interval, which has limitations. The MAE found in this
study could be a helpful reference point for future studies. In this
study, we tested two algorithm versions for RR estimation that
differed only in the SNR threshold. Our results suggest that this
parameter had little impact on the accuracy or error rates.

This work supports the use of consumer-grade smartphones
for measuring HR and RR. One application of these measure-
ments is in fitness and wellness for the general consumer user.
Specifically, an elevated resting HR or slower heart rate recovery
after exercise has been linked to lower physical fitness and higher
risk of all-cause mortality48,49. Evidence suggests the use of
direct-to-consumer mobile health technologies may enhance
positive lifestyle modification such as increased physical activity,
more weight loss, and better diabetes control50–52. Tracking one’s
own health-related parameters over time by the general public
can potentially increase motivation for a healthier lifestyle by
providing an objective, quantifiable metric6. Additionally, there
exists strong evidence that regular physical activity is key to
improving one’s health independent of age, sex, race, ethnicity, or
current fitness level for maintaining cardiovascular health53.
Monitoring one’s HR is also an easy and effective way to assess
and adjust exercise intensity or enable smartphone-based mea-
surement of cardiorespiratory fitness54–56.

With further clinical validation across broad populations, such
smartphone-based measurement could also be useful in various
settings, most notably telehealth where vital sign measurement is
challenging due to the remote nature of the patient
encounter57,58. Though patients can in principle count their own
HR or RR, this can be error-prone due to factors such as biases
that acute awareness of the self-examination can cause59,60.
Because the demand for remote triage, diagnosis, and monitoring
is burgeoning in the wake of the COVID-19 pandemic, there is
increased attention being paid to accurate remote physical
examination3,22,23.

Fig. 3 Bland–Altman plots for the respiratory rate (RR) study. Results are presented for a algorithm version A (n= 50) and b algorithm version B
(n= 50). From left to right, plots are respectively results for the full study followed by subgroups based on absence vs. presence of chronic respiratory
conditions. The reference RR was obtained by research coordinators manually counting breaths (see Methods). Dots represent individual participants; blue
lines indicate the mean difference; red lines indicate the 95% limits of agreement (mean difference ± 1.96 standard deviations).
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There are several limitations to this work. First, our quantita-
tive results focused on specific study devices (Pixel 3 and 4) and
quantitative data on generalization to other devices will be nee-
ded. The current studies were also conducted in a controlled
setting with structured study protocols. Though the participants
used these features without significant study staff assistance, their
ease of use in a general population will need further study. For the
broad population, there also exists an inherent accessibility/cost
and convenience tradeoff between needing to trigger measure-
ments via a camera-equipped smartphone they likely already
own, versus receiving passive ongoing measurements via a dedi-
cated wearable wellness tracking device. Next, our reference HR
comes from a clinical PPG device instead of an electro-
cardiogram. There may be infrequent instances of electro-
mechanical dissociation (such as various heart blocks, ventricular
tachycardia, etc), in which a pulse rate measured at the periphery
may not be the same with the reference electrical “heart” rate61.
Future evaluations using an electrocardiogram measurement may
be helpful in this regard. Our HR algorithm is similarly subject to
such errors because it relies on the pulsatile movement of blood
in the fingertips. Further, awareness of self-measurement may
affect users’ RR. A study demonstrated that people may have
slightly lower RR when they are aware that they are monitored by
observers62. It is yet unclear how awareness would affect user-
triggered RR measurements using apps in the absence of human-
to-human interaction, and creative study designs may be needed
to better understand this. In addition, though the study enroll-
ment was optimized for diversity, this impacted the sample size in
each subpopulation and the number of covariates that can be
analyzed. We did not collect other clinical information such as
body mass index, which may potentially affect the accuracy of the
algorithms. Larger real-world validation that also measures the
effect along such axes will be helpful. Also, these clinical valida-
tion studies aimed to evaluate the algorithms at a steady-state; the
mean HR post-exercise was 93 beats/min. Further work will be
needed to investigate scenarios where HR and/or RR are more
elevated and under a broader array of participants, activities, and
environments. Though the sex ratio was balanced for the RR
study, the female:male ratio was skewed in the HR study. Last but
not least, although both HR and RR estimation algorithms met
the predefined goals, observations with high deviation from the
reference values were still produced by the algorithms (albeit
infrequently). Future work to reduce errors is needed.

In addition to the clinical validation studies reported in this
work, these HR and RR algorithms are currently undergoing
additional broad usability testing across users, different Android
devices, and different environments as we make the algorithms
more widely accessible for consumers, beginning by incorporat-
ing into the Google Fit app.

To conclude, we developed HR- and RR-measurement algo-
rithms for smartphones and conducted two clinical studies to
validate their accuracy in various study populations. Both algo-
rithms showed acceptable error ranges with a MAPE under 2% for
HR and MAE under 1 breath/min for RR. These algorithms may
prove useful in wellness settings such as fitness monitoring. Addi-
tional research is warranted before consideration for any future use
in clinical settings, such as remote physical examination.

Data availability
The data are not publicly available because they contain videos of the participants and
public release was not part of informed consent.

Code availability
The algorithms were released as a feature in the Google Fit app to support widespread
consumer use as of March 2021. Users and researchers are able to directly access the
feature via the app, on supported phones. On the Google Play store, the app can be found

at: https://play.google.com/store/apps/details?id=com.google.android.apps.fitness. On
the iOS App Store, the app can be found at: https://apps.apple.com/us/app/google-fit-
activity-tracker/id1433864494. The raw code is not available because of dependencies on
internal proprietary code. The help page for accessing and using the features is at: https://
support.google.com/fit/answer/10477667?hl=en. Any future changes made to the
algorithm will be indicated in the help notes, update notes, or within the app itself.
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