+
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inhibition of 15-PGDH causes Kras-driven tumor expansion through prostaglandin E2-ALDH1 signaling in the pancreas

Abstract

The accumulation of prostaglandin E2 (PGE2) during chronic inflammation has been implicated in the progression of several cancers. Cyclooxygenase is the key synthesizing enzyme of PGE2, although the degradation enzyme 15-hydroxyprostaglandin dehydrogenase (15-PGDH) has received considerable attention recently. We investigated the molecular mechanisms of pancreatic ductal adenocarcinoma (PDAC) progression via 15-PGDH downregulation. Here, we found that 15-PGDH expression was inversely correlated with ALDH1, an important cancer stem cell-associated marker indicative of poor prognosis in humans. Moreover, we demonstrated that pharmacological inhibition of 15-PGDH enhanced CYP26A1 expression, leading to depletion of all-trans retinoic acid (ATRA) and expansion of the ALDH1-positive subset in both human PDAC cells and tumor cells of KrasLSL-G12D/+; Ptf1aCre/+ (KC) mice. Furthermore, genetic deletion of 15-Pgdh in KC mice showed PGE2 accumulation and ATRA depletion in the pancreas, resulting in PDAC with high levels of Aldh1 and Ki-67. Finally, ATRA replacement suppressed 15-PGDH inhibition-induced tumor progression in KC mice, and ATRA treatment attenuated Aldh1 activity in tumor cells isolated from the pancreas of 15-Pgdh−/− KC mice. These findings provide evidence that 15-PGDH inhibition enhances KRAS-driven tumor progression via ATRA depletion in the pancreas. Therefore, ATRA replacement could be a potential strategy for PDAC treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vincent A, Herman J, Schulick R, Hruban RH, Goggins M. Pancreatic cancer. Lancet. 2011;378:607–20.

    Article  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30.

    Article  Google Scholar 

  3. Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 2008;8:755–68.

    Article  CAS  Google Scholar 

  4. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67:1030–7.

    Article  CAS  Google Scholar 

  5. Rasheed ZA, Yang J, Wang Q, Kowalski J, Freed I, Murter C, et al. Prognostic significance of tumorigenic cells with mesenchymal features in pancreatic adenocarcinoma. J Natl Cancer Inst. 2010;102:340–51.

    Article  CAS  Google Scholar 

  6. Li C, Wu JJ, Hynes M, Dosch J, Sarkar B, Welling TH, et al. c-Met is a marker of pancreatic cancer stem cells and therapeutic target. Gastroenterology. 2011;141:2218–27 e2215.

    Article  CAS  Google Scholar 

  7. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860–7.

    Article  CAS  Google Scholar 

  8. Baumgart S, Ellenrieder V, Fernandez-Zapico ME. Oncogenic transcription factors: cornerstones of inflammation-linked pancreatic carcinogenesis. Gut. 2013;62:310–6.

    Article  CAS  Google Scholar 

  9. Wang D, Dubois RN. Eicosanoids and cancer. Nat Rev Cancer. 2010;10:181–93.

    Article  CAS  Google Scholar 

  10. Harris SG, Padilla J, Koumas L, Ray D, Phipps RP. Prostaglandins as modulators of immunity. Trends Immunol. 2002;23:144–50.

    Article  CAS  Google Scholar 

  11. Zhang Y, Desai A, Yang SY, Bae KB, Antczak MI, Fink SP, et al. TISSUE REGENERATION. Inhibition of the prostaglandin-degrading enzyme 15-PGDH potentiates tissue regeneration. Science. 2015;348:aaa2340.

    Article  Google Scholar 

  12. Huang G, Eisenberg R, Yan M, Monti S, Lawrence E, Fu P, et al. 15-Hydroxyprostaglandin dehydrogenase is a target of hepatocyte nuclear factor 3beta and a tumor suppressor in lung cancer. Cancer Res. 2008;68:5040–8.

    Article  CAS  Google Scholar 

  13. Mehdawi LM, Prasad CP, Ehrnstrom R, Andersson T, Sjolander A. Non-canonical WNT5A signaling up-regulates the expression of the tumor suppressor 15-PGDH and induces differentiation of colon cancer cells. Mol Oncol. 2016;10:1415–29.

    Article  CAS  Google Scholar 

  14. Wolf I, O’Kelly J, Rubinek T, Tong M, Nguyen A, Lin BT, et al. 15-hydroxyprostaglandin dehydrogenase is a tumor suppressor of human breast cancer. Cancer Res. 2006;66:7818–23.

    Article  CAS  Google Scholar 

  15. Arima K, Komohara Y, Bu L, Tsukamoto M, Itoyama R, Miyake K, et al. Downregulation of 15-hydroxyprostaglandin dehydrogenase by interleukin-1beta from activated macrophages leads to poor prognosis in pancreatic cancer. Cancer Sci. 2018;109:462–70.

    Article  CAS  Google Scholar 

  16. North TE, Goessling W, Walkley CR, Lengerke C, Kopani KR, Lord AM, et al. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature. 2007;447:1007–11.

    Article  CAS  Google Scholar 

  17. Kochel TJ, Goloubeva OG, Fulton AM. Upregulation of cyclooxygenase-2/prostaglandin E2 (COX-2/PGE2) pathway member multiple drug resistance-associated protein 4 (MRP4) and downregulation of prostaglandin Transporter (PGT) and 15-prostaglandin dehydrogenase (15-PGDH) in triple-negative. Breast Cancer (Auckl). 2016;10:61–70.

    CAS  Google Scholar 

  18. Young MJ, Wu YH, Chiu WT, Weng TY, Huang YF, Chou CY. All-trans retinoic acid downregulates ALDH1-mediated stemness and inhibits tumour formation in ovarian cancer cells. Carcinogenesis. 2015;36:498–507.

    Article  CAS  Google Scholar 

  19. Nelson CH, Buttrick BR, Isoherranen N. Therapeutic potential of the inhibition of the retinoic acid hydroxylases CYP26A1 and CYP26B1 by xenobiotics. Curr Top Med Chem. 2013;13:1402–28.

    Article  CAS  Google Scholar 

  20. Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA, et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell. 2003;4:437–50.

    Article  CAS  Google Scholar 

  21. Hruban RH, Adsay NV, Albores-Saavedra J, Anver MR, Biankin AV, Boivin GP, et al. Pathology of genetically engineered mouse models of pancreatic exocrine cancer: consensus report and recommendations. Cancer Res. 2006;66:95–106.

    Article  CAS  Google Scholar 

  22. Ishimoto T, Miyake K, Nandi T, Yashiro M, Onishi N, Huang KK, et al. Activation of transforming growth factor beta 1 signaling in gastric cancer-associated fibroblasts increases their motility, via expression of rhomboid 5 homolog 2, and ability to induce invasiveness of gastric cancer cells. Gastroenterology. 2017;153:191–204.e16.

    Article  CAS  Google Scholar 

  23. Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454:428–35.

    Article  CAS  Google Scholar 

  24. Greenhough A, Smartt HJ, Moore AE, Roberts HR, Williams AC, Paraskeva C, et al. The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis. 2009;30:377–86.

    Article  CAS  Google Scholar 

  25. Oshima H, Hioki K, Popivanova BK, Oguma K, Van Rooijen N, Ishikawa TO, et al. Prostaglandin E(2) signaling and bacterial infection recruit tumor-promoting macrophages to mouse gastric tumors. Gastroenterology. 2011;140:596–607 e597.

    Article  CAS  Google Scholar 

  26. Rothwell PM, Fowkes FG, Belch JF, Ogawa H, Warlow CP, Meade TW. Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet. 2011;377:31–41.

    Article  CAS  Google Scholar 

  27. Jayson GC, Kohn EC, Kitchener HC, Ledermann JA. Ovarian cancer. Lancet. 2014;384:1376–88.

    Article  Google Scholar 

  28. Markowitz SD, Bertagnolli MM. Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med. 2009;361:2449–60.

    Article  CAS  Google Scholar 

  29. Swanton C, Govindan R. Clinical implications of genomic discoveries in lung cancer. N Engl J Med. 2016;374:1864–73.

    Article  CAS  Google Scholar 

  30. Loo TM, Kamachi F, Watanabe Y, Yoshimoto S, Kanda H, Arai Y, et al. Gut microbiota promotes obesity-associated liver cancer through PGE2-mediated suppression of antitumor immunity. Cancer Discov. 2017;7:522–38.

    Article  CAS  Google Scholar 

  31. Coggins KG, Latour A, Nguyen MS, Audoly L, Coffman TM, Koller BH. Metabolism of PGE2 by prostaglandin dehydrogenase is essential for remodeling the ductus arteriosus. Nat Med. 2002;8:91–92.

    Article  CAS  Google Scholar 

  32. Ryan DP, Hong TS, Bardeesy N. Pancreatic adenocarcinoma. N Engl J Med. 2014;371:1039–49.

    Article  CAS  Google Scholar 

  33. Guerra C, Barbacid M. Genetically engineered mouse models of pancreatic adenocarcinoma. Mol Oncol. 2013;7:232–47.

    Article  CAS  Google Scholar 

  34. Zhao D, Mo Y, Li MT, Zou SW, Cheng ZL, Sun YP, et al. NOTCH-induced aldehyde dehydrogenase 1A1 deacetylation promotes breast cancer stem cells. J Clin Invest. 2014;124:5453–65.

    Article  Google Scholar 

  35. Fu Z, Chen C, Zhou Q, Wang Y, Zhao Y, Zhao X, et al. LncRNA HOTTIP modulates cancer stem cell properties in human pancreatic cancer by regulating HOXA9. Cancer Lett. 2017;410:68–81.

    Article  CAS  Google Scholar 

  36. Chen Z, Che Q, He X, Wang F, Wang H, Zhu M, et al. Stem cell protein Piwil1 endowed endometrial cancer cells with stem-like properties via inducing epithelial-mesenchymal transition. BMC Cancer. 2015;15:811.

    Article  Google Scholar 

  37. Altucci L, Gronemeyer H. The promise of retinoids to fight against cancer. Nat Rev Cancer. 2001;1:181–93.

    Article  CAS  Google Scholar 

  38. Wei S, Kozono S, Kats L, Nechama M, Li W, Guarnerio J, et al. Active Pin1 is a key target of all-trans retinoic acid in acute promyelocytic leukemia and breast cancer. Nat Med. 2015;21:457–66.

    Article  CAS  Google Scholar 

  39. Nguyen PH, Giraud J, Staedel C, Chambonnier L, Dubus P, Chevret E, et al. All-trans retinoic acid targets gastric cancer stem cells and inhibits patient-derived gastric carcinoma tumor growth. Oncogene. 2016;35:5619–28.

    Article  CAS  Google Scholar 

  40. Chronopoulos A, Robinson B, Sarper M, Cortes E, Auernheimer V, Lachowski D, et al. ATRA mechanically reprograms pancreatic stellate cells to suppress matrix remodelling and inhibit cancer cell invasion. Nat Commun. 2016;7:12630.

    Article  Google Scholar 

  41. Taki K, Ohmuraya M, Tanji E, Komatsu H, Hashimoto D, Semba K, et al. GNAS(R201H) and Kras(G12D) cooperate to promote murine pancreatic tumorigenesis recapitulating human intraductal papillary mucinous neoplasm. Oncogene. 2016;35:2407–12.

    Article  CAS  Google Scholar 

  42. Mashiko D, Fujihara Y, Satouh Y, Miyata H, Isotani A, Ikawa M. Generation of mutant mice by pronuclear injection of circular plasmid expressing Cas9 and single guided RNA. Sci Rep. 2013;3:3355.

    Article  Google Scholar 

  43. Hashimoto M, Takemoto T. Electroporation enables the efficient mRNA delivery into the mouse zygotes and facilitates CRISPR/Cas9-based genome editing. Sci Rep. 2015;5:11315.

    Article  CAS  Google Scholar 

  44. Ishimoto T, Nagano O, Yae T, Tamada M, Motohara T, Oshima H, et al. CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(-) and thereby promotes tumor growth. Cancer Cell. 2011;19:387–400.

    Article  CAS  Google Scholar 

  45. Kane MA, Folias AE, Wang C, Napoli JL. Quantitative profiling of endogenous retinoic acid in vivo and in vitro by tandem mass spectrometry. Anal Chem. 2008;80:1702–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. David A. Tuveson (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA) for providing the KrasLSL-G12D mice and to Dr. Sanford D. Markowitz (Department of Medicine, Case Western Reserve University, Cleveland, OH, USA) for their kind advice about establishing 15-Pgdh/− mice. This work was supported, in part, by the Japan Society for the Promotion of Science KAKENHI (Grant Numbers 16H06257, 16K15595, 17K16570, and 17K16571), Grant-in-Aid for JSPS Research Fellows (Grant Numbers 201860083), the Pancreas Research Foundation of Japan, the Kanae Foundation for the Promotion of Medical Science, the Yasuda Medical Foundation and the Shinnihon Foundation of Advanced Medical Treatment Research.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: Ko.A., H.B., T.I.; methodology development: Ko.A., M.O., K.M.; data acquisition: Ko.A., K.M., M.K., F.G., T.U, D.I., A.Y., L.B.; data analysis and interpretation: Ko.A., T.I.; manuscript writing and review: Ko.A., H.B., T.I.; administrative, technical, or material support: M.O., H.O., K.I., D.H., Y.B., A.C., Y.Y., T.F., Ki.A.; study supervision: M.O., T.F., Ki.A., H.B., T.I.

Corresponding authors

Correspondence to Hideo Baba or Takatsugu Ishimoto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arima, K., Ohmuraya, M., Miyake, K. et al. Inhibition of 15-PGDH causes Kras-driven tumor expansion through prostaglandin E2-ALDH1 signaling in the pancreas. Oncogene 38, 1211–1224 (2019). https://doi.org/10.1038/s41388-018-0510-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-018-0510-y

This article is cited by

Search

Quick links

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载