+
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Psychedelic studies in nonhuman primates: Past and future

Abstract

Studies of serotonergic or ‘classic’ psychedelics in nonhuman primates (NHPs) have provided valuable information about the drugs’ effects on the brain and behavior in closely related species to humans. Psychedelics induce characteristic changes to both spontaneous and operant behaviors in NHPs, though variability exists in the different effects reported by different studies; this variability could be due to factors like differences across drugs, differences in dose ranges across studies, and inter-individual variability in drug responsiveness. Several effects of psychedelics in NHPs mirror those in humans, including development of tolerance to psychedelic effects and low abuse liability, though evidence is mixed on whether psychedelics cause visual hallucinations in NHPs. NHP studies have also examined psychedelic mechanisms of action, supporting and connecting existing findings from human and rodent studies. Here we review the knowledge gained from psychedelic research in NHPs encompassing multiple psychedelic compounds in several NHP species. We conclude by highlighting NHPs’ potential to serve as preclinical models of psychedelic effects on psychiatric conditions and suggesting several directions for future research to ensure the accuracy and effectiveness of an NHP psychedelic model.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemical structures of classic serotonergic psychedelics.
Fig. 2
Fig. 3: Brain areas identified as areas of psychedelic action in humans, NHPs, and rodents.

Similar content being viewed by others

References

  1. Bogenschutz MP, Ross S, Bhatt S, Baron T, Forcehimes AA, Laska E, et al. Percentage of heavy drinking days following psilocybin-assisted psychotherapy vs placebo in the treatment of adult patients with alcohol use disorder: a randomized clinical trial. JAMA Psychiatry. 2022;79:953–62.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Goodwin GM, Aaronson ST, Alvarez O, Arden PC, Baker A, Bennett JC, et al. Single-dose psilocybin for a treatment-resistant episode of major depression. N Engl J Med. 2022;387:1637–48.

    Article  CAS  PubMed  Google Scholar 

  3. Raison CL, Sanacora G, Woolley J, Heinzerling K, Dunlop BW, Brown RT, et al. Single-dose psilocybin treatment for major depressive disorder: a randomized clinical trial. JAMA. 2023;330:843–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Holze F, Gasser P, Müller F, Dolder PC, Liechti ME. Lysergic acid diethylamide-assisted therapy in patients with anxiety with and without a life-threatening illness: a randomized, double-blind, placebo-controlled phase II study. Biol Psychiatry. 2023;93:215–23.

    Article  CAS  PubMed  Google Scholar 

  5. Johnson MW, Hendricks PS, Barrett FS, Griffiths RR. Classic psychedelics: an integrative review of epidemiology, therapeutics, mystical experience, and brain network function. Pharmacol Ther. 2019;197:83–102.

    Article  CAS  PubMed  Google Scholar 

  6. Banks ML, Czoty PW, Negus SS. Utility of nonhuman primates in substance use disorders research. ILAR J. 2017;58:202–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Weerts EM, Fantegrossi WE, Goodwin AK. The value of nonhuman primates in drug abuse research. Exp Clin Psychopharmacol. 2007;15:309–27.

    Article  CAS  PubMed  Google Scholar 

  8. Mathai DS, Meyer MJ, Storch EA, Kosten TR. The relationship between subjective effects induced by a single dose of ketamine and treatment response in patients with major depressive disorder: a systematic review. J Affect Disord. 2020;264:123–9.

    Article  PubMed  Google Scholar 

  9. Schmid Y, Gasser P, Oehen P, Liechti ME. Acute subjective effects in LSD- and MDMA-assisted psychotherapy. J Psychopharmacol. 2021;35:362–74.

    Article  CAS  PubMed  Google Scholar 

  10. Zorumski CF, Izumi Y, Mennerick S. Ketamine: NMDA receptors and beyond. J Neurosci. 2016;36:11158–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McCann UD, Ricaurte GA. Chapter fifteen - effects of MDMA on the human nervous system. In: Madras B, Kuhar M (eds). The effects of drug abuse on the human nervous system. Oxford, UK: Elsevier; 2014. pp. 475-97.

  12. Schlemmer RF, Davis JM. A primate model for the study of hallucinogens. Pharmacol Biochem Behav. 1986;24:381–92.

    Article  CAS  PubMed  Google Scholar 

  13. Schlemmer RF, Nawara C, Heinze WJ, Davis JM, Advokat C. Influence of environmental context on tolerance to LSD-induced behavior in primates. Biol Psychiatry. 1986;21:314–7.

    Article  CAS  PubMed  Google Scholar 

  14. Schlemmer RF, Tyler CB, Narasimhachari N, Davis JM. The comparative effects of LSD, mescaline, & DMT on primate social and solitary behavior. Federation Proc. 1978;37:659.

    Google Scholar 

  15. Baldwin M, Lewis SA, Bach SA. The effects of lysergic acid after cerebral ablation. Neurology. 1959;9:469–74.

    Article  CAS  PubMed  Google Scholar 

  16. Brower KJ, Siegel RK. Hallucinogen-induced behaviors of free-moving chimpanzees. Bull Psychonomic Soc. 1977;9:287–90.

    Article  CAS  Google Scholar 

  17. Kato T, Jarvik LF, Roizin L, Moralishvili E. Chromosome studies in pregnant rhesus macaques given LSD-25. Dis Nerv Syst. 1970;31:245–50.

    CAS  PubMed  Google Scholar 

  18. Klüver H, Bucy PC. Preliminary analysis of functions of the temporal lobes in monkeys. 1939. J Neuropsychiatry Clin Neurosci. 1997;9:606–20.

    Article  PubMed  Google Scholar 

  19. Siegel RK, Brewster JM, Jarvik ME. An observational study of hallucinogen-induced behavior in unrestrained macaca mulatta. Psychopharmacologia. 1974;40:211–23.

    Article  CAS  PubMed  Google Scholar 

  20. Hardman HF, Haavik CO, Seevers MH. Relationship of the structure of mescaline and seven analogs to toxicity and behavior in five species of laboratory animals. Toxicol Appl Pharmacol. 1973;25:299–309.

    Article  CAS  PubMed  Google Scholar 

  21. Fantegrossi WE, Woods JH, Winger G. Transient reinforcing effects of phenylisopropylamine and indolealkylamine hallucinogens in rhesus monkeys. Behav Pharmacol. 2004;15:149–57.

    Article  CAS  PubMed  Google Scholar 

  22. Haigler HJ, Spring DD. Drugs that antagonize limb flick behavior induced by D-lysergic acid diethylamide (LSD) in cats. Psychopharmacology. 1979;64:31–4.

    Article  CAS  PubMed  Google Scholar 

  23. Jacobs BL, Trulson ME, Stern WC. Behavioral effects of LSD in the cat: proposal of an animal behavior model for studying the actions of hallucinogenic drugs. Brain Res. 1977;132:301–14.

    Article  CAS  PubMed  Google Scholar 

  24. Halberstadt AL, Geyer MA. Characterization of the head-twitch response induced by hallucinogens in mice: detection of the behavior based on the dynamics of head movement. Psychopharmacology. 2013;227:727–39.

    Article  CAS  PubMed  Google Scholar 

  25. Shao L-X, Liao C, Gregg I, Davoudian PA, Savalia NK, Delagarza K, et al. Psilocybin induces rapid and persistent growth of dendritic spines in frontal cortex in vivo. Neuron. 2021;109:2535–44.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Halberstadt AL, Chatha M, Klein AK, Wallach J, Brandt SD. Correlation between the potency of hallucinogens in the mouse head-twitch response assay and their behavioral and subjective effects in other species. Neuropharmacology. 2020;167:107933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wallach J, Cao AB, Calkins MM, Heim AJ, Lanham JK, Bonniwell EM, et al. Identification of 5-HT(2A) receptor signaling pathways associated with psychedelic potential. Nat Commun. 2023;14:8221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Halberstadt AL, Geyer MA. Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens. Neuropharmacology. 2011;61:364–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. González-Maeso J, Weisstaub NV, Zhou M, Chan P, Ivic L, Ang R, et al. Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior. Neuron. 2007;53:439–52.

    Article  PubMed  Google Scholar 

  30. Bermond F, Bert J. Action de la psilocybine sur le comportement d’un cercopithecinae papio-papio [the effect of psilocybine on the behavior of the cercopithecinae papiopapio]. Psychopharmacologia. 1969;15:109–15.

    Article  CAS  PubMed  Google Scholar 

  31. Butelman ER, Rus S, Prisinzano TE, Kreek MJ. The discriminative effects of the kappa-opioid hallucinogen salvinorin a in nonhuman primates: dissociation from classic hallucinogen effects. Psychopharmacology. 2010;210:253–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Horibe M. The effects of psilocybin on EEG and behaviour in monkeys. Act Nerv Super. 1974;16:40–2.

    CAS  Google Scholar 

  33. Davis WM, Bedford JA, Buelke JL, Guinn MM, Hatoum HT, Waters IW, et al. Acute toxicity and gross behavioral effects of amphetamine, four methoxyamphetamines, and mescaline in rodents, dogs, and monkeys. Toxicol Appl Pharmacol. 1978;45:49–62.

    Article  CAS  PubMed  Google Scholar 

  34. Anderson JR. Non-human primates: a comparative developmental perspective on yawning. Front Neurol Neurosci. 2010;28:63–76.

    Article  PubMed  Google Scholar 

  35. Bonnelle V, Feilding A, Rosas FE, Nutt DJ, Carhart-Harris RL, Timmermann C. Autonomic nervous system activity correlates with peak experiences induced by DMT and predicts increases in well-being. J Psychopharmacol. 2024;38:887–96.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Holze F, Ley L, Müller F, Becker AM, Straumann I, Vizeli P, et al. Direct comparison of the acute effects of lysergic acid diethylamide and psilocybin in a double-blind placebo-controlled study in healthy subjects. Neuropsychopharmacology. 2022;47:1180–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hasler F, Grimberg U, Benz MA, Huber T, Vollenweider FX. Acute psychological and physiological effects of psilocybin in healthy humans: a double-blind, placebo-controlled dose-effect study. Psychopharmacology. 2004;172:145–56.

    Article  CAS  PubMed  Google Scholar 

  38. Madsen MK, Fisher PM, Burmester D, Dyssegaard A, Stenbæk DS, Kristiansen S, et al. Psychedelic effects of psilocybin correlate with serotonin 2A receptor occupancy and plasma psilocin levels. Neuropsychopharmacology. 2019;44:1328–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rickli A, Moning OD, Hoener MC, Liechti ME. Receptor interaction profiles of novel psychoactive tryptamines compared with classic hallucinogens. Eur Neuropsychopharmacol. 2016;26:1327–37.

    Article  CAS  PubMed  Google Scholar 

  40. Carbonaro TM, Gatch MB. Neuropharmacology of N,N-dimethyltryptamine. Brain Res Bull. 2016;126:74–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. De Gregorio D, Aguilar-Valles A, Preller KH, Heifets BD, Hibicke M, Mitchell J, et al. Hallucinogens in mental health: preclinical and clinical studies on LSD, psilocybin, MDMA, and ketamine. J Neurosci. 2021;41:891–900.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kwan AC, Olson DE, Preller KH, Roth BL. The neural basis of psychedelic action. Nat Neurosci. 2022;25:1407–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nichols DE. Psychedelics. Pharmacol Rev. 2016;68:264–355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ley L, Holze F, Arikci D, Becker AM, Straumann I, Klaiber A, et al. Comparative acute effects of mescaline, lysergic acid diethylamide, and psilocybin in a randomized, double-blind, placebo-controlled cross-over study in healthy participants. Neuropsychopharmacology. 2023;48:1659–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vamvakopoulou IA, Narine KAD, Campbell I, Dyck JRB, Nutt DJ. Mescaline: the forgotten psychedelic. Neuropharmacology. 2023;222:109294.

    Article  CAS  PubMed  Google Scholar 

  46. Wolbach AB Jr., Isbell H, Miner EJ. Cross tolerance between mescaline and LSD-25, with a comparison of the mescaline and LSD reactions. Psychopharmacologia. 1962;3:1–14.

    Article  CAS  PubMed  Google Scholar 

  47. Dinis-Oliveira RJ, Pereira CL, da Silva DD. Pharmacokinetic and pharmacodynamic aspects of peyote and mescaline: clinical and forensic repercussions. Curr Mol Pharmacol. 2019;12:184–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Geiger HA, Wurst MG, Daniels RN. DARK classics in chemical neuroscience: psilocybin. ACS Chem Neurosci. 2018;9:2438–47.

    Article  CAS  PubMed  Google Scholar 

  49. Passie T, Halpern JH, Stichtenoth DO, Emrich HM, Hintzen A. The pharmacology of lysergic acid diethylamide: a review. CNS Neurosci Ther. 2008;14:295–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nielsen EB. Discriminative stimulus properties of lysergic acid diethylamide in the monkey. J Pharmacol Exp Ther. 1985;234:244–9.

    Article  CAS  PubMed  Google Scholar 

  51. Ando K, Takada K. Trialwise tracking method for measuring drug-affected sensory threshold changes in animals. Neurobehav Toxicol. 1979;1(Suppl 1):45–52.

    CAS  PubMed  Google Scholar 

  52. Jarvik ME, Chorover S. Impairment by lysergic acid diethylamide of accuracy in performance of a delayed alternation test in monkeys. Psychopharmacologia. 1960;1:221–30.

    Article  CAS  PubMed  Google Scholar 

  53. Sharpe LG, Otis LS, Schusterman RJ. Disruption of size discrimination in squirrel monkeys (Saimiri sciureus) by LSD-25. Psychonomic Sci. 1967;7:103–4.

    Article  Google Scholar 

  54. Hutten N, Quaedflieg C, Mason NL, Theunissen EL, Liechti ME, Duthaler U, et al. Inter-individual variability in neural response to low doses of LSD. Transl Psychiatry. 2024;14:288.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Schmitz GP, Jain MK, Slocum ST, Roth BL. 5-HT(2A) SNPs alter the pharmacological signaling of potentially therapeutic psychedelics. ACS Chem Neurosci. 2022;13:2386–98.

    Article  CAS  PubMed  Google Scholar 

  56. Alagga AA, Pellegrini MV, Gupta V. Drug absorption. Treasure Island (FL): StatPearls Publishing; 2025.

    Google Scholar 

  57. Bicker J, Alves G, Falcao A, Fortuna A. Timing in drug absorption and disposition: the past, present, and future of chronopharmacokinetics. Br J Pharmacol. 2020;177:2215–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Das S, Barnwal P, Ramasamy A, Sen S, Mondal S. Lysergic acid diethylamide: a drug of ‘use’? Ther Adv Psychopharmacol. 2016;6:214–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Johnson MW, Griffiths RR, Hendricks PS, Henningfield JE. The abuse potential of medical psilocybin according to the 8 factors of the controlled substances act. Neuropharmacology. 2018;142:143–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hadorn DC, Anistranski JA, Connor JD. Influence of naloxone on the effects of LSD in monkeys. Neuropharmacology. 1984;23:1297–300.

    Article  CAS  PubMed  Google Scholar 

  61. Isbell H, Wolbach AB, Wikler A, Miner EJ. Cross tolerance between LSD and psilocybin. Psychopharmacologia. 1961;2:147–59.

    Article  CAS  PubMed  Google Scholar 

  62. Cole JM, Pieper WA. The effects of N,N-dimethyltryptamine on operant behavior in squirrel monkeys. Psychopharmacologia. 1973;29:107–12.

    Article  CAS  PubMed  Google Scholar 

  63. Winstock AR, Kaar S, Borschmann R. Dimethyltryptamine (DMT): prevalence, user characteristics and abuse liability in a large global sample. J Psychopharmacol. 2014;28:49–54.

    Article  PubMed  Google Scholar 

  64. Griffiths RR, Richards WA, McCann U, Jesse R. Psilocybin can occasion mystical-type experiences having substantial and sustained personal meaning and spiritual significance. Psychopharmacology. 2006;187:268–83. discussion 84-92

    Article  CAS  PubMed  Google Scholar 

  65. Frederick DL, Gillam MP, Lensing S, Paule MG. Acute effects of LSD on rhesus monkey operant test battery performance. Pharmacol Biochem Behav. 1997;57:633–41.

    Article  CAS  PubMed  Google Scholar 

  66. Fuster JM. Lysergic acid and its effects on visual discrimination in monkeys. J Nerv Ment Dis. 1959;129:252–6.

    Article  CAS  PubMed  Google Scholar 

  67. Gouzoulis-Mayfrank E, Thelen B, Maier S, Heekeren K, Kovar KA, Sass H, et al. Effects of the hallucinogen psilocybin on covert orienting of visual attention in humans. Neuropsychobiology. 2002;45:205–12.

    Article  CAS  PubMed  Google Scholar 

  68. Hutten N, Mason NL, Dolder PC, Theunissen EL, Holze F, Liechti ME, et al. Mood and cognition after administration of low LSD doses in healthy volunteers: a placebo controlled dose-effect finding study. Eur Neuropsychopharmacol. 2020;41:81–91.

    Article  CAS  PubMed  Google Scholar 

  69. Schmack K, Bosc M, Ott T, Sturgill JF, Kepecs A. Striatal dopamine mediates hallucination-like perception in mice. Science. 2021;372:eabf4740.

    Article  CAS  PubMed  Google Scholar 

  70. Everitt BJ, Robbins TW. Second-order schedules of drug reinforcement in rats and monkeys: measurement of reinforcing efficacy and drug-seeking behaviour. Psychopharmacology. 2000;153:17–30.

    Article  CAS  PubMed  Google Scholar 

  71. Goodwin AK. An intravenous self-administration procedure for assessing the reinforcing effects of hallucinogens in nonhuman primates. J Pharmacol Toxicol Methods. 2016;82:31–6.

    Article  CAS  PubMed  Google Scholar 

  72. Hoffmeister F. Negative reinforcing properties of some psychotropic drugs in drug-naive rhesus monkeys. J Pharmacol Exp Ther. 1975;192:468–77.

    Article  CAS  PubMed  Google Scholar 

  73. Floris G, Dabrowski KR, Zanda MT, Daws SE. Psilocybin reduces heroin seeking behavior and modulates inflammatory gene expression in the nucleus accumbens and prefrontal cortex of male rats. Mol Psychiatry. 2025;30:1801–16.

    Article  CAS  PubMed  Google Scholar 

  74. Bonilla J, Giannotti G, Kregar NP, Heinsbroek JA, Olson DE, Peters J. The psychedelic drug DOI reduces heroin motivation by targeting 5-HT2A receptors in a heroin and alcohol co-use model. Neuropharmacology. 2024;261:110163.

    Article  CAS  PubMed  Google Scholar 

  75. Maguire DR, Li JX, Koek W, France CP. Effects of 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM) and quipazine on heroin self-administration in rhesus monkeys. Psychopharmacology. 2013;225:173–85.

    Article  CAS  PubMed  Google Scholar 

  76. Johnson MW, Garcia-Romeu A, Cosimano MP, Griffiths RR. Pilot study of the 5-HT2AR agonist psilocybin in the treatment of tobacco addiction. J Psychopharmacol. 2014;28:983–92.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Carhart-Harris RL, Muthukumaraswamy S, Roseman L, Kaelen M, Droog W, Murphy K, et al. Neural correlates of the LSD experience revealed by multimodal neuroimaging. Proc Natl Acad Sci USA. 2016;113:4853–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Murray CH, Tare I, Perry CM, Malina M, Lee R, de Wit H. Low doses of LSD reduce broadband oscillatory power and modulate event-related potentials in healthy adults. Psychopharmacology. 2022;239:1735–47.

    Article  CAS  PubMed  Google Scholar 

  79. Riba J, Anderer P, Morte A, Urbano G, Jané F, Saletu B, et al. Topographic pharmaco-EEG mapping of the effects of the South American psychoactive beverage ayahuasca in healthy volunteers. Br J Clin Pharmacol. 2002;53:613–28.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Valle M, Maqueda AE, Rabella M, Rodriguez-Pujadas A, Antonijoan RM, Romero S, et al. Inhibition of alpha oscillations through serotonin-2A receptor activation underlies the visual effects of ayahuasca in humans. Eur Neuropsychopharmacol. 2016;26:1161–75.

    Article  CAS  PubMed  Google Scholar 

  81. Muthukumaraswamy SD, Carhart-Harris RL, Moran RJ, Brookes MJ, Williams TM, Errtizoe D, et al. Broadband cortical desynchronization underlies the human psychedelic state. J Neurosci. 2013;33:15171–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Monroe RR, Heath RG. Effects of lysergic acid and various derivatives on depth and cortical electrograms. J Neuropsychiatr. 1961;3:75–82.

    CAS  PubMed  Google Scholar 

  83. Schwarz BE, Sem-Jacobsen CW, Petersen MC. Effects of mescaline, LSD-25, and adrenochrome on depth electrograms in man. AMA Arch Neurol Psychiatry. 1956;75:579–87.

    Article  CAS  PubMed  Google Scholar 

  84. Serafetinides EA. The EEG effects of LSD-25 in epileptic patients before and after temporal lobectomy. Psychopharmacologia. 1965;7:453–60.

    Article  CAS  PubMed  Google Scholar 

  85. Daumann J, Wagner D, Heekeren K, Neukirch A, Thiel CM, Gouzoulis-Mayfrank E. Neuronal correlates of visual and auditory alertness in the DMT and ketamine model of psychosis. J Psychopharmacol. 2010;24:1515–24.

    Article  CAS  PubMed  Google Scholar 

  86. Pasquini L, Simon AJ, Gallen CL, Kettner H, Roseman L, Gazzaley A, et al. Dynamic medial parietal and hippocampal deactivations under DMT relate to sympathetic output and altered sense of time, space, and the self. Imaging Neurosci. 2025;3:imag_a_00541.

  87. Carhart-Harris RL, Leech R, Williams TM, Erritzoe D, Abbasi N, Bargiotas T, et al. Implications for psychedelic-assisted psychotherapy: functional magnetic resonance imaging study with psilocybin. Br J Psychiatry. 2012;200:238–44.

    Article  CAS  PubMed  Google Scholar 

  88. Kraehenmann R, Preller KH, Scheidegger M, Pokorny T, Bosch OG, Seifritz E, et al. Psilocybin-induced decrease in amygdala reactivity correlates with enhanced positive mood in healthy volunteers. Biol Psychiatry. 2015;78:572–81.

    Article  CAS  PubMed  Google Scholar 

  89. Lebedev AV, Lövdén M, Rosenthal G, Feilding A, Nutt DJ, Carhart-Harris RL. Finding the self by losing the self: neural correlates of ego-dissolution under psilocybin. Hum Brain Mapp. 2015;36:3137–53.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Bagdasarian FA, Hansen HD, Chen J, Yoo CH, Placzek MS, Hooker JM, et al. Acute effects of hallucinogens on functional connectivity: psilocybin and salvinorin-A. ACS Chem Neurosci. 2024;15:2654–61.

    Article  CAS  PubMed  Google Scholar 

  91. Barrett FS, Krimmel SR, Griffiths RR, Seminowicz DA, Mathur BN. Psilocybin acutely alters the functional connectivity of the claustrum with brain networks that support perception, memory, and attention. Neuroimage. 2020;218:116980.

    Article  CAS  PubMed  Google Scholar 

  92. Carhart-Harris RL, Leech R, Erritzoe D, Williams TM, Stone JM, Evans J, et al. Functional connectivity measures after psilocybin inform a novel hypothesis of early psychosis. Schizophr Bull. 2013;39:1343–51.

    Article  PubMed  Google Scholar 

  93. Siegel JS, Subramanian S, Perry D, Kay BP, Gordon EM, Laumann TO, et al. Psilocybin desynchronizes the human brain. Nature. 2024;632:131–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gresch PJ, Strickland LV, Sanders-Bush E. Lysergic acid diethylamide-induced fos expression in rat brain: role of serotonin-2A receptors. Neuroscience. 2002;114:707–13.

    Article  CAS  PubMed  Google Scholar 

  95. Glynos NG, Huels ER, Nelson A, Kim Y, Kennedy RT, Mashour GA, et al. Neurochemical and neurophysiological effects of intravenous administration of N,N -Dimethyltryptamine in Rats. bioRxiv: 2024.04.19.589047. [Preprint]. 2025. Available from: https://www.biorxiv.org/search/Neurochemical%252Band%252Bneurophysiological%252Beffects%252Bof%252Bintravenous%252Badministration%252Bof%252BN%252CN%252B-Dimethyltryptamine%252Bin%252BRats.

  96. Davoudian PA, Shao LX, Kwan AC. Shared and distinct brain regions targeted for immediate early gene expression by ketamine and psilocybin. ACS Chem Neurosci. 2023;14:468–80.

    Article  CAS  PubMed  Google Scholar 

  97. Frankel PS, Cunningham KA. The hallucinogen d-lysergic acid diethylamide (d-LSD) induces the immediate-early gene c-Fos in rat forebrain. Brain Res. 2002;958:251–60.

    Article  CAS  PubMed  Google Scholar 

  98. Golden CT, Chadderton P. Psilocybin reduces low frequency oscillatory power and neuronal phase-locking in the anterior cingulate cortex of awake rodents. Sci Rep. 2022;12:12702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hesselgrave N, Troppoli TA, Wulff AB, Cole AB, Thompson SM. Harnessing psilocybin: antidepressant-like behavioral and synaptic actions of psilocybin are independent of 5-HT2R activation in mice. Proc Natl Acad Sci USA. 2021;118:e2022489118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. D’Souza DC, Syed SA, Flynn LT, Safi-Aghdam H, Cozzi NV, Ranganathan M. Exploratory study of the dose-related safety, tolerability, and efficacy of dimethyltryptamine (DMT) in healthy volunteers and major depressive disorder. Neuropsychopharmacology. 2022;47:1854–62.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Palhano-Fontes F, Barreto D, Onias H, Andrade KC, Novaes MM, Pessoa JA, et al. Rapid antidepressant effects of the psychedelic ayahuasca in treatment-resistant depression: a randomized placebo-controlled trial. Psychol Med. 2019;49:655–63.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Croxson PL, Forkel SJ, Cerliani L, Thiebaut de Schotten M. Structural variability across the primate brain: a cross-species comparison. Cereb Cortex. 2018;28:3829–41.

    Article  PubMed  Google Scholar 

  103. Lu X, Wang Q, Li X, Wang G, Chen Y, Li X, et al. Connectivity reveals homology between the visual systems of the human and macaque brains. Front Neurosci. 2023;17:1207340.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Petrides M, Tomaiuolo F, Yeterian EH, Pandya DN. The prefrontal cortex: comparative architectonic organization in the human and the macaque monkey brains. Cortex. 2012;48:46–57.

    Article  PubMed  Google Scholar 

  105. Butler M, Jelen L, Rucker J. Expectancy in placebo-controlled trials of psychedelics: if so, so what? Psychopharmacology. 2022;239:3047–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Muthukumaraswamy SD, Forsyth A, Lumley T. Blinding and expectancy confounds in psychedelic randomized controlled trials. Expert Rev Clin Pharmacol. 2021;14:1133–52.

    Article  CAS  PubMed  Google Scholar 

  107. Kim K, Che T, Panova O, DiBerto JF, Lyu J, Krumm BE, et al. Structure of a hallucinogen-activated Gq-coupled 5-HT(2A) serotonin receptor. Cell. 2020;182:1574–88 e19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Da Silva FS, Silva EAS, Sousa GM Jr, Maia-de-Oliveira JP, Soares-Rachetti VP, De Araujo DB, et al. Acute effects of ayahuasca in a juvenile non-human primate model of depression. Braz J Psychiatry. 2019;41:280–8.

    Article  PubMed  Google Scholar 

  109. Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 2016;7:27–31.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Aleksandrova LR, Phillips AG. Neuroplasticity as a convergent mechanism of ketamine and classical psychedelics. Trends Pharmacol Sci. 2021;42:929–42.

    Article  CAS  PubMed  Google Scholar 

  111. Calder AE, Hasler G. Towards an understanding of psychedelic-induced neuroplasticity. Neuropsychopharmacology. 2023;48:104–12.

    Article  PubMed  Google Scholar 

  112. Liao C, Dua AN, Wojtasiewicz C, Liston C, Kwan AC. Structural neural plasticity evoked by rapid-acting antidepressant interventions. Nat Rev Neurosci. 2025;26:101–14.

    Article  CAS  PubMed  Google Scholar 

  113. Du Y, Li Y, Zhao X, Yao Y, Wang B, Zhang L, et al. Psilocybin facilitates fear extinction in mice by promoting hippocampal neuroplasticity. Chin Med J. 2023;136:2983–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Morales-Garcia JA, Calleja-Conde J, Lopez-Moreno JA, Alonso-Gil S, Sanz-SanCristobal M, Riba J, et al. N,N-dimethyltryptamine compound found in the hallucinogenic tea ayahuasca, regulates adult neurogenesis in vitro and in vivo. Transl Psychiatry. 2020;10:331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Holze F, Vizeli P, Ley L, Müller F, Dolder P, Stocker M, et al. Acute dose-dependent effects of lysergic acid diethylamide in a double-blind placebo-controlled study in healthy subjects. Neuropsychopharmacology. 2021;46:537–44.

    Article  CAS  PubMed  Google Scholar 

  116. Hutten N, Mason NL, Dolder PC, Theunissen EL, Holze F, Liechti ME, et al. Low doses of LSD acutely increase BDNF blood plasma levels in healthy volunteers. ACS Pharmacol Transl Sci. 2021;4:461–6.

    Article  CAS  PubMed  Google Scholar 

  117. de Almeida RN, Galvão ACM, da Silva FS, Silva E, Palhano-Fontes F, Maia-de-Oliveira JP, et al. Modulation of serum brain-derived neurotrophic factor by a single dose of ayahuasca: observation from a randomized controlled trial. Front Psychol. 2019;10:1234.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Tartt AN, Mariani MB, Hen R, Mann JJ, Boldrini M. Dysregulation of adult hippocampal neuroplasticity in major depression: pathogenesis and therapeutic implications. Mol Psychiatry. 2022;27:2689–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Rosas-Sánchez GU, Germán-Ponciano LJ, Guillen-Ruiz G, Cueto-Escobedo J, Limón-Vázquez AK, Rodríguez-Landa JF, et al. Neuroplasticity and mechanisms of action of acute and chronic treatment with antidepressants in preclinical studies. Biomedicines. 2024;12:2744.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Spence AL, Keller CM, Mott M, Murnane KS. Chapter 2 - animal models. In: Kaye AD, Urman RD, Cornett EM, Edinoff AN (eds). Substance use and addiction research. Oxford, UK: Elsevier; 2023. pp. 11–22.

  121. Huskinson SL, Naylor JE, Rowlett JK, Freeman KB. Predicting abuse potential of stimulants and other dopaminergic drugs: overview and recommendations. Neuropharmacology. 2014;87:66–80.

    Article  CAS  PubMed  Google Scholar 

  122. Maguire DR, Minervini V. Interactions between opioids and stimulants: Behavioral pharmacology of abuse-related effects. In: Li JX (ed.). Behavioral pharmacology of drug abuse: current status. Oxford, UK: Academic Press, Inc. 932022. pp. 1-33.

  123. Järbe TU, Gifford RS. “Herbal incense”: designer drug blends as cannabimimetics and their assessment by drug discrimination and other in vivo bioassays. Life Sci. 2014;97:64–71.

    Article  PubMed  Google Scholar 

  124. Winter JC. The stimulus effects of serotonergic hallucinogens in animals. In: Lin GC, Glennon RA (eds). Hallucinogens: an update (NIDA Research Monograph 146). Rockville, MD: National Institute on Drug Abuse; 1994. pp. 157–82.

  125. Murnane KS. The renaissance in psychedelic research: what do preclinical models have to offer. Prog braresearch: Psychedelic Neurosci. 2018;242:25–67.

    Google Scholar 

  126. Li JX, Koek W, Rice KC, France CP. Differential effects of serotonin 5-HT1A receptor agonists on the discriminative stimulus effects of the 5-HT2A receptor agonist 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane in rats and rhesus monkeys. J Pharmacol Exp Ther. 2010;333:244–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Li JX, Rice KC, France CP. Discriminative stimulus effects of 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane in rhesus monkeys. J Pharmacol Exp Ther. 2008;324:827–33.

    Article  CAS  PubMed  Google Scholar 

  128. Li JX, Rice KC, France CP. Discriminative stimulus effects of 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane in rhesus monkeys: antagonism and apparent pA2 analyses. J Pharmacol Exp Ther. 2009;328:976–81.

    Article  CAS  PubMed  Google Scholar 

  129. Soldin OP, Chung SH, Mattison DR. Sex differences in drug disposition. J Biomed Biotechnol. 2011;2011:187103.

    PubMed  PubMed Central  Google Scholar 

  130. Soldin OP, Mattison DR. Sex differences in pharmacokinetics and pharmacodynamics. Clin Pharmacokinet. 2009;48:143–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Barus R, Bergeron S, Chen Y, Gautier S. Sex differences: from preclinical pharmacology to clinical pharmacology. Therapie. 2023;78:189–94.

    Article  PubMed  Google Scholar 

  132. Altemus M, Sarvaiya N, Neill Epperson C. Sex differences in anxiety and depression clinical perspectives. Front Neuroendocrinol. 2014;35:320–30.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Eid RS, Gobinath AR, Galea LAM. Sex differences in depression: insights from clinical and preclinical studies. Prog Neurobiol. 2019;176:86–102.

    Article  PubMed  Google Scholar 

  134. McHugh RK, Votaw VR, Sugarman DE, Greenfield SF. Sex and gender differences in substance use disorders. Clin Psychol Rev. 2018;66:12–23.

    Article  PubMed  Google Scholar 

  135. Shadani S, Conn K, Andrews ZB, Foldi CJ. Potential differences in psychedelic actions based on biological sex. Endocrinology. 2024;165:bqae083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Dolder PC, Schmid Y, Muller F, Borgwardt S, Liechti ME. LSD acutely impairs fear recognition and enhances emotional empathy and sociality. Neuropsychopharmacology. 2016;41:2638–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Noorani T, Garcia-Romeu A, Swift TC, Griffiths RR, Johnson MW. Psychedelic therapy for smoking cessation: qualitative analysis of participant accounts. J Psychopharmacol. 2018;32:756–69.

    Article  PubMed  Google Scholar 

  138. Pokorny T, Preller KH, Kometer M, Dziobek I, Vollenweider FX. Effect of psilocybin on empathy and moral decision-making. Int J Neuropsychopharmacol. 2017;20:747–57.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Bhatt KV, Weissman CR. The effect of psilocybin on empathy and prosocial behavior: a proposed mechanism for enduring antidepressant effects. Npj Ment Health Res. 2024;3:7.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Chang SW, Brent LJ, Adams GK, Klein JT, Pearson JM, Watson KK, et al. Neuroethology of primate social behavior. Proc Natl Acad Sci USA. 2013;110(Suppl 2(Suppl 2)):10387–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Platt ML, Seyfarth RM, Cheney DL. Adaptations for social cognition in the primate brain. Philos Trans R Soc Lond B Biol Sci. 2016;371:20150096.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Bucy PC, Kluver H. An anatomical investigation of the temporal lobe in the monkey (Macaca mulatta). J Comp Neurol. 1955;103:151–251.

    Article  CAS  PubMed  Google Scholar 

  143. Falchi-Carvalho M, Wießner I, Silva SRB, O Maia L, Barros H, Laborde S, et al. Safety and tolerability of inhaled N,N-dimethyltryptamine (BMND01 candidate): a phase I clinical trial. Eur Neuropsychopharmacol. 2024;80:27–35.

    Article  CAS  PubMed  Google Scholar 

  144. Good M, Joel Z, Benway T, Routledge C, Timmermann C, Erritzoe D, et al. Pharmacokinetics of N,N-dimethyltryptamine in humans. Eur J Drug Metab Pharmacokinet. 2023;48:311–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Klaiber A, Schmid Y, Becker AM, Straumann I, Erne L, Jelusic A, et al. Acute dose-dependent effects of mescaline in a double-blind placebo-controlled study in healthy subjects. Transl Psychiatry. 2024;14:395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Cawthon Lang KA Primate factsheets: stump-tailed macaque (Macaca arctoides) taxonomy, morphology, & ecology University of Wisconsin-Madison: Wisconsin National Primate Research Center; 2005. Available from: https://primate.wisc.edu/primate-info-net/pin-factsheets/pin-factsheet-stump-tailed-macaque/.

  147. Cawthon Lang KA Primate factsheets: rhesus macaque (Macaca mulatta) taxonomy, morphology, & ecology. University of Wisconsin-Madison: Wisconsin National Primate Research Center; 2005. Available from: https://primate.wisc.edu/primate-info-net/pin-factsheets/pin-factsheet-rhesus-macaque/.

  148. Ding SL, Royall JJ, Sunkin SM, Ng L, Facer BA, Lesnar P, et al. Comprehensive cellular-resolution atlas of the adult human brain. J Comp Neurol. 2016;524:3127–481.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Saleem KS, Logothetis NK A combined mri and histology atlas of the rhesus monkey brain in stereotaxic coordinates 2nd edition with horizontal, coronal, and sagittal series: Elsevier/Academic Press; 2012.

  150. Paxinos G, Watson C The rat brain in stereotaxic coordinates, 5th Edition: Elsevier/Academic Press; 2004.

Download references

Acknowledgements

This work was supported by NIH grants R01MH128217 (A.C.K.), R01MH137047 (A.C.K.), and One Mind – COMPASS Rising Star Award (A.C.K.), and by the National Institute for Mental Health (R01 MH128190; SW.C.C.).

Author information

Authors and Affiliations

Authors

Contributions

JCM conceptualized the review, conducted the literature review, created figures, and wrote the manuscript. ACK contributed to the literature review, created figures, and wrote the manuscript. SWCC conceptualized the review, contributed to the literature review, and wrote the manuscript.

Corresponding author

Correspondence to Steve W. C. Chang.

Ethics declarations

Competing interests

ACK has been a scientific advisor or consultant for Boehringer Ingelheim, Empyrean Neuroscience, Freedom Biosciences, and Xylo Bio. ACK has received research support from Intra-Cellular Therapies. The other authors declare no competing financial interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masthay, J.C., Kwan, A.C. & Chang, S.W.C. Psychedelic studies in nonhuman primates: Past and future. Mol Psychiatry (2025). https://doi.org/10.1038/s41380-025-03240-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41380-025-03240-5

Search

Quick links

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载