+
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Contribution of copy number variations to education, socioeconomic status and cognition from a genome-wide study of 305,401 subjects

Abstract

Educational attainment (EA), socioeconomic status (SES) and cognition are phenotypically and genetically linked to health outcomes. However, the role of copy number variations (CNVs) in influencing EA/SES/cognition remains unclear. Using a large-scale (n = 305,401) genome-wide CNV-level association analysis, we discovered 33 CNV loci significantly associated with EA/SES/cognition, 20 of which were novel (deletions at 2p22.2, 2p16.2, 2p12, 3p25.3, 4p15.2, 5p15.33, 5q21.1, 8p21.3, 9p21.1, 11p14.3, 13q12.13, 17q21.31, and 20q13.33, as well as duplications at 3q12.2, 3q23, 7p22.3, 8p23.1, 8p23.2, 17q12 (105 kb), and 19q13.32). The genes identified in gene-level tests were enriched in biological pathways such as neurodegeneration, telomere maintenance and axon guidance. Phenome-wide association studies further identified novel associations of EA/SES/cognition-associated CNVs with mental and physical diseases, such as 6q27 duplication with upper respiratory disease and 17q12 (105 kb) duplication with mood disorders. Our findings provide a genome-wide CNV profile for EA/SES/cognition and bridge their connections to health. The expanded candidate CNVs database and the residing genes would be a valuable resource for future studies aimed at uncovering the biological mechanisms underlying cognitive function and related clinical phenotypes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Analysis framework and key findings of this study.
Fig. 2: Genome-wide CNV-level associations for EA/SES/cognition.
Fig. 3: Functional annotation of identified CNV genes.
Fig. 4: Phenome-wide association of EA/SES/cognition-associated CNVs.

Similar content being viewed by others

Data availability

Genotype, behavioral and neuroimaging data from the UK Biobank dataset are available at https://biobank.ndph.ox.ac.uk/ by application. The variables used in this study are detailed in Supplementary Table 1. The previously published GWASs of EA/SES/cognition was downloaded from https://www.ebi.ac.uk/gwas/.

Code availability

PennCNV 1.0.5 (https://penncnv.openbioinformatics.org/) was used for CNV calling. PLINK 2.0 (https://www.cog-genomics.org/plink) was used to perform genome-wide CNV-phenotypes analysis and gene-level association analysis. ANNOVAR (https://annovar.openbioinformatics.org/) was used for CNV-gene mapping. STRING (https://www.stringdb.org/) and Metaspace (https://metascape.org) were used for protein-protein interaction network. FUMA (https://fuma.ctglab.nl/) and Metaspace (https://metascape.org) were used to perform gene set enrichment analysis. Cytoscape (https://cytoscape.org/) for calculating importance score. PheWAS 0.99.5-5 package in R version 4.0.3 was used to perform the phenome-wide association study.

References

  1. Kivimäki M, Batty GD, Pentti J, Shipley MJ, Sipilä PN, Nyberg ST, et al. Association between socioeconomic status and the development of mental and physical health conditions in adulthood: a multi-cohort study. Lancet Public Health. 2020;5:e140–e149.

    PubMed  Google Scholar 

  2. Davies NM, Dickson M, Davey Smith G, van den Berg GJ, Windmeijer F. The causal effects of education on health outcomes in the UK Biobank. Nat Hum Behav. 2018;2:117–25.

    PubMed  PubMed Central  Google Scholar 

  3. Wendt FR, Pathak GA, Lencz T, Krystal JH, Gelernter J, Polimanti R. Multivariate genome-wide analysis of education, socioeconomic status and brain phenome. Nat Hum Behav. 2021;5:482–96.

    PubMed  Google Scholar 

  4. Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh PR, et al. An atlas of genetic correlations across human diseases and traits. Nat Genet. 2015;47:1236–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Marees AT, Smit DJA, Abdellaoui A, Nivard MG, van den Brink W, Denys D, et al. Genetic correlates of socio-economic status influence the pattern of shared heritability across mental health traits. Nat Hum Behav. 2021;5:1065–73.

    PubMed  PubMed Central  Google Scholar 

  6. Ye CJ, Kong LJ, Wang YY, Dou C, Zheng J, Xu M, et al. Mendelian randomization evidence for the causal effects of socio-economic inequality on human longevity among Europeans. Nat Hum Behav. 2023;7:1357–70.

    PubMed  Google Scholar 

  7. Okbay A, Wu Y, Wang N, Jayashankar H, Bennett M, Nehzati SM, et al. Polygenic prediction of educational attainment within and between families from genome-wide association analyses in 3 million individuals. Nat Genet. 2022;54:437–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hill WD, Davies NM, Ritchie SJ, Skene NG, Bryois J, Bell S, et al. Genome-wide analysis identifies molecular systems and 149 genetic loci associated with income. Nat Commun. 2019;10:5741.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Davies G, Lam M, Harris SE, Trampush JW, Luciano M, Hill WD, et al. Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nat Commun. 2018;9:2098.

    PubMed  PubMed Central  Google Scholar 

  10. Hill WD, Hagenaars SP, Marioni RE, Harris SE, Liewald DCM, Davies G, et al. Molecular Genetic Contributions to Social Deprivation and Household Income in UK Biobank. Curr Biol. 2016;26:3083–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J, et al. An integrated map of structural variation in 2,504 human genomes. Nature. 2015;526:75–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Auwerx C, Lepamets M, Sadler MC, Patxot M, Stojanov M, Baud D, et al. The individual and global impact of copy-number variants on complex human traits. Am J Hum Genet. 2022;109:647–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hujoel MLA, Sherman MA, Barton AR, Mukamel RE, Sankaran VG, Terao C, et al. Influences of rare copy-number variation on human complex traits. Cell. 2022;185:4233–48.e4227.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Männik K, Mägi R, Macé A, Cole B, Guyatt AL, Shihab HA, et al. Copy number variations and cognitive phenotypes in unselected populations. Jama. 2015;313:2044–54.

    PubMed  PubMed Central  Google Scholar 

  15. Kendall KM, Rees E, Escott-Price V, Einon M, Thomas R, Hewitt J, et al. Cognitive performance among carriers of pathogenic copy number variants: analysis of 152,000 UK Biobank subjects. Biol Psychiatry. 2017;82:103–10.

    PubMed  Google Scholar 

  16. Stefansson H, Meyer-Lindenberg A, Steinberg S, Magnusdottir B, Morgen K, Arnarsdottir S, et al. CNVs conferring risk of autism or schizophrenia affect cognition in controls. Nature. 2014;505:361–6.

    CAS  PubMed  Google Scholar 

  17. Lavrichenko K, Johansson S, Jonassen I. Comprehensive characterization of copy number variation (CNV) called from array, long- and short-read data. BMC Genomics. 2021;22:826.

    PubMed  PubMed Central  Google Scholar 

  18. Lee JJ, Wedow R, Okbay A, Kong E, Maghzian O, Zacher M, et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat Genet. 2018;50:1112–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Okbay A, Beauchamp JP, Fontana MA, Lee JJ, Pers TH, Rietveld CA, et al. Genome-wide association study identifies 74 loci associated with educational attainment. Nature. 2016;533:539–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Townsend P. Deprivation. Journal of social policy. 1987;16:125–46.

    Google Scholar 

  21. Wang K, Li M, Hadley D, Liu R, Glessner J, Grant SF, et al. PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res. 2007;17:1665–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Aguirre M, Rivas MA, Priest J. Phenome-wide burden of copy-number variation in the UK Biobank. Am J Hum Genet. 2019;105:373–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Li YR, Glessner JT, Coe BP, Li J, Mohebnasab M, Chang X, et al. Rare copy number variants in over 100,000 European ancestry subjects reveal multiple disease associations. Nat Commun. 2020;11:255.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Beyter D, Ingimundardottir H, Oddsson A, Eggertsson HP, Bjornsson E, Jonsson H, et al. Long-read sequencing of 3,622 Icelanders provides insight into the role of structural variants in human diseases and other traits. Nat Genet. 2021;53:779–86.

    CAS  PubMed  Google Scholar 

  26. Marshall CR, Howrigan DP, Merico D, Thiruvahindrapuram B, Wu W, Greer DS, et al. Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nat Genet. 2017;49:27–35.

    CAS  PubMed  Google Scholar 

  27. Coe BP, Witherspoon K, Rosenfeld JA, van Bon BW, Vulto-van Silfhout AT, Bosco P, et al. Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nat Genet. 2014;46:1063–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional mapping and annotation of genetic associations with FUMA. Nat Commun. 2017;8:1826.

    PubMed  PubMed Central  Google Scholar 

  29. Snel B, Lehmann G, Bork P, Huynen MA. STRING: a web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids Res. 2000;28:3442–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10:1523.

    PubMed  PubMed Central  Google Scholar 

  31. Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8:S11. Suppl 4

    PubMed  PubMed Central  Google Scholar 

  32. UK Biobank. First Occurrence of Health Outcomes Defined by 3-character ICD10 code, (2019).

  33. UK Biobank. Cancer data: linkage from national cancer registries, (2013).

  34. Wu P, Gifford A, Meng X, Li X, Campbell H, Varley T, et al. Mapping ICD-10 and ICD-10-CM codes to phecodes: workflow development and initial evaluation. JMIR Med Inform. 2019;7:e14325.

    PubMed  PubMed Central  Google Scholar 

  35. Miller KL, Alfaro-Almagro F, Bangerter NK, Thomas DL, Yacoub E, Xu J, et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat Neurosci. 2016;19:1523–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Alfaro-Almagro F, Jenkinson M, Bangerter NK, Andersson JLR, Griffanti L, Douaud G, et al. Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank. Neuroimage. 2018;166:400–24.

    PubMed  Google Scholar 

  37. Sollis E, Mosaku A, Abid A, Buniello A, Cerezo M, Gil L, et al. The NHGRI-EBI GWAS Catalog: knowledgebase and deposition resource. Nucleic Acids Res. 2023;51:D977–d985.

    CAS  PubMed  Google Scholar 

  38. Shaw CA, Li Y, Wiszniewska J, Chasse S, Zaidi SN, Jin W, et al. Olfactory copy number association with age at onset of Alzheimer disease. Neurology. 2011;76:1302–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Purwar N, Tiwari P, Mathur N, Sharma H, Sahlot R, Garg U, et al. Higher CNV frequencies in chromosome 14 of girls with turner syndrome phenotype. J Clin Endocrinol Metab. 2021;106:e4935–e4955.

    PubMed  Google Scholar 

  40. Priebe L, Degenhardt FA, Herms S, Haenisch B, Mattheisen M, Nieratschker V, et al. Genome-wide survey implicates the influence of copy number variants (CNVs) in the development of early-onset bipolar disorder. Mol Psychiatry. 2012;17:421–32.

    CAS  PubMed  Google Scholar 

  41. Artuso R, Papa FT, Grillo E, Mucciolo M, Yasui DH, Dunaway KW, et al. Investigation of modifier genes within copy number variations in Rett syndrome. J Hum Genet. 2011;56:508–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Rietveld CA, Medland SE, Derringer J, Yang J, Esko T, Martin NW, et al. GWAS of 126,559 individuals identifies genetic variants associated with educational attainment. Science. 2013;340:1467–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Alexander-Bloch A, Huguet G, Schultz LM, Huffnagle N, Jacquemont S, Seidlitz J, et al. Copy number variant risk scores associated with cognition, psychopathology, and brain structure in youths in the Philadelphia neurodevelopmental cohort. JAMA Psychiatry. 2022;79:699–709.

    PubMed  PubMed Central  Google Scholar 

  44. van der Meer D, Sønderby IE, Kaufmann T, Walters GB, Abdellaoui A, Ames D, et al. Association of copy number variation of the 15q11.2 BP1-BP2 region with cortical and subcortical morphology and cognition. JAMA Psychiatry. 2020;77:420–30.

    PubMed  Google Scholar 

  45. Warland A, Kendall KM, Rees E, Kirov G, Caseras X. Schizophrenia-associated genomic copy number variants and subcortical brain volumes in the UK Biobank. Mol Psychiatry. 2020;25:854–62.

    CAS  PubMed  Google Scholar 

  46. Wu M, Michaud EJ, Johnson DK. Cloning, functional study and comparative mapping of Luzp2 to mouse chromosome 7 and human chromosome 11p13-11p14. Mamm Genome. 2003;14:323–34.

    CAS  PubMed  Google Scholar 

  47. Li YJ, Nuytemans K, La JO, Jiang R, Slifer SH, Sun S, et al. Identification of novel genes for age-at-onset of Alzheimer’s disease by combining quantitative and survival trait analyses. Alzheimers Dement. 2023;19:3148–57.

    Google Scholar 

  48. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–7.

    PubMed Central  Google Scholar 

  49. Loo SK, Shtir C, Doyle AE, Mick E, McGough JJ, McCracken J, et al. Genome-wide association study of intelligence: additive effects of novel brain expressed genes. J Am Acad Child Adolesc Psychiatry. 2012;51:432–440.e432.

    PubMed  Google Scholar 

  50. Li JQ, Yuan XZ, Li HY, Cao XP, Yu JT, Tan L, et al. Genome-wide association study identifies two loci influencing plasma neurofilament light levels. BMC Med Genomics. 2018;11:47.

    PubMed  PubMed Central  Google Scholar 

  51. Seshadri S, DeStefano AL, Au R, Massaro JM, Beiser AS, Kelly-Hayes M, et al. Genetic correlates of brain aging on MRI and cognitive test measures: a genome-wide association and linkage analysis in the Framingham Study. BMC Med Genet. 2007;8:S15.

    PubMed  PubMed Central  Google Scholar 

  52. Stepanov V, Vagaitseva K, Bocharova A, Marusin A, Markova V, Minaycheva L, et al. Analysis of association of genetic markers in the LUZP2 and FBXO40 genes with the normal variability in cognitive performance in the elderly. Int J Alzheimers Dis. 2018;2018:2686045.

    PubMed  PubMed Central  Google Scholar 

  53. Li Y, Deng G, Qi Y, Zhang H, Jiang H, Geng R, et al. Downregulation of LUZP2 is correlated with poor prognosis of low-grade glioma. Biomed Res Int. 2020;2020:9716720.

    PubMed  PubMed Central  Google Scholar 

  54. Colobran R, Pedrosa E, Carretero-Iglesia L, Juan M. Copy number variation in chemokine superfamily: the complex scene of CCL3L-CCL4L genes in health and disease. Clin Exp Immunol. 2010;162:41–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Shostakovich-Koretskaya L, Catano G, Chykarenko ZA, He W, Gornalusse G, Mummidi S, et al. Combinatorial content of CCL3L and CCL4L gene copy numbers influence HIV-AIDS susceptibility in Ukrainian children. Aids. 2009;23:679–88.

    PubMed  Google Scholar 

  56. Kim YH, Lee EE, Sim HW, Kang EK, Won YH, Lee DE, et al. CCL3L3-null status is associated with susceptibility to systemic lupus erythematosus. Sci Rep. 2021;11:19172.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ghoryani M, Faridhosseini F, Talaei A, Faridhosseini R, Tavakkol-Afshari J, Dadgar Moghaddam M, et al. Gene expression pattern of CCL2, CCL3, and CXCL8 in patients with bipolar disorder. J Res Med Sci. 2019;24:45.

    PubMed  PubMed Central  Google Scholar 

  58. Stuart MJ, Baune BT. Chemokines and chemokine receptors in mood disorders, schizophrenia, and cognitive impairment: a systematic review of biomarker studies. Neurosci Biobehav Rev. 2014;42:93–115.

    CAS  PubMed  Google Scholar 

  59. Leighton SP, Nerurkar L, Krishnadas R, Johnman C, Graham GJ, Cavanagh J. Chemokines in depression in health and in inflammatory illness: a systematic review and meta-analysis. Mol Psychiatry. 2018;23:48–58.

    CAS  PubMed  Google Scholar 

  60. Puntambekar SS, Moutinho M, Lin PB, Jadhav V, Tumbleson-Brink D, Balaji A, et al. CX3CR1 deficiency aggravates amyloid driven neuronal pathology and cognitive decline in Alzheimer’s disease. Mol Neurodegener. 2022;17:47.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhou F, Sun Y, Xie X, Zhao Y. Blood and CSF chemokines in Alzheimer’s disease and mild cognitive impairment: a systematic review and meta-analysis. Alzheimers Res Ther. 2023;15:107.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Ye J, Wang H, Cui L, Chu S, Chen N. The progress of chemokines and chemokine receptors in autism spectrum disorders. Brain Res Bull. 2021;174:268–80.

    CAS  PubMed  Google Scholar 

  63. Crawford K, Bracher-Smith M, Owen D, Kendall KM, Rees E, Pardiñas AF, et al. Medical consequences of pathogenic CNVs in adults: analysis of the UK Biobank. J Med Genet. 2019;56:131–8.

    CAS  PubMed  Google Scholar 

  64. Birnbaum R, Mahjani B, Loos RJF, Sharp AJ. Clinical characterization of copy number variants associated with neurodevelopmental disorders in a large-scale multiancestry biobank. JAMA Psychiatry. 2022;79:250–9.

    PubMed  Google Scholar 

  65. Zhang YB, Chen C, Pan XF, Guo J, Li Y, Franco OH, et al. Associations of healthy lifestyle and socioeconomic status with mortality and incident cardiovascular disease: two prospective cohort studies. Bmj. 2021;373:n604.

    PubMed  PubMed Central  Google Scholar 

  66. Fry A, Littlejohns TJ, Sudlow C, Doherty N, Adamska L, Sprosen T, et al. Comparison of sociodemographic and health-related characteristics of UK Biobank participants with those of the general population. Am J Epidemiol. 2017;186:1026–34.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was conducted under the UK Biobank application ID 19542. We thank the participants and researchers from the UK Biobank. This study was supported by grants from the STI2030-Major Projects (2022ZD0211600), National Natural Science Foundation of China (92249305, 82071201, 81971032), Shanghai Municipal Science and Technology Major Project (No.2018SHZDZX01), Shanghai Talent Development Funding for The Project (2019074), Research Start-up Fund of Huashan Hospital (2022QD002), Excellence 2025 Talent Cultivation Program at Fudan University (3030277001), and ZHANGJIANG LAB, Tianqiao and Chrissy Chen Institute, and the State Key Laboratory of Neurobiology and Frontiers Center for Brain Science of Ministry of Education, Fudan University. W.C. was supported by grants from the National Natural Sciences Foundation of China (No. 82071997) and the Shanghai Rising-Star Program (No. 21QA1408700).

Author information

Authors and Affiliations

Authors

Contributions

JTY and WC had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Concept and design: JTY. Acquisition, analysis, or interpretation of data: XRW, WBS, JJK, LMC, YTD, SDC, QD, JFF, WC and JTY. Drafting of the manuscript: XRW, JJK, WBS, LMC, WC and JTY. Critical revision of the manuscript for important intellectual content: XRW, WBS, JJK, LMC, YTD, SDC, QD, JFF, WC and JTY. Statistical analysis: XRW, BSW and JJK. Obtained funding: JTY. Administrative, technical, or material support: QD, JFF, WC and JTY. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Wei Cheng or Jin-Tai Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The UK Biobank study was approved by the UK Biobank’s research ethics committee and Human Tissue Authority research tissue bank. The current analysis was approved under the UK Biobank application ID 19542. The ethical approval was from the North West Multi-centre Research Ethics Committee (approval letter dated 17th June 2011, Ref 11/NW/0382). Written informed consent was obtained from all participants.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, XR., Wu, BS., Kang, JJ. et al. Contribution of copy number variations to education, socioeconomic status and cognition from a genome-wide study of 305,401 subjects. Mol Psychiatry 30, 889–898 (2025). https://doi.org/10.1038/s41380-024-02717-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41380-024-02717-z

Search

Quick links

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载