+
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Iron-catalysed alkenylzincation of allenes via electrophilicity reversal

Abstract

Given the structural characteristics of allenes, nucleophilic additions usually occur at the electron-deficient central carbon atom of allene. Here we report an iron-catalysed alkenylzincation reaction of terminal allenes that shows abnormal regioselectivity, wherein the electrophilic zinc moiety from an organozinc reagent is incorporated at the electron-deficient central carbon atom of the allene. This alkenylzincation reaction shows broad functional group compatibility and excellent regio- and stereoselectivities. Using this method, we accessed cis-1,4-dienylzinc reagents and their corresponding polysubstituted 1,4-diene derivatives, which are notoriously challenging to prepare via conventional routes. Mechanistic studies revealed that an unexpected reversal of the electrophilicity of the allene carbons is realized through the electron donation from the Fe(0) to the allene via π back-bonding, resulting in the observed abnormal regioselectivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Catalytic alkenylzincation of terminal allenes.
Fig. 2: Substrate scope of monosubstituted and disubstituted allenes.
Fig. 3: Substrate scope of substituted alkenylzinc reagents.
Fig. 4: Synthetic applications of the iron-catalysed vinylzincation of terminal allenes.
Fig. 5: Mechanistic studies.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the Article and its Supplementary Information or from the authors upon reasonable request. Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2293033. Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Ma, S.-M. Some typical advances in the synthetic applications of allenes. Chem. Rev. 105, 2829–2872 (2005).

    Article  PubMed  Google Scholar 

  2. Hoffmann-Röder, A. & Krause, N. Synthesis and properties of allenic natural products and pharmaceuticals. Angew. Chem. Int. Ed. 43, 1196–1216 (2004).

    Article  Google Scholar 

  3. Rivera-Fuentes, P. & Diederich, F. Allenes in molecular materials. Angew. Chem. Int. Ed. 51, 2818–2828 (2012).

    Article  CAS  Google Scholar 

  4. Ma, S.-M. Electrophilic addition and cyclization reactions of allenes. Acc. Chem. Res. 42, 1679–1688 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Ye, J.-T. & Ma, S.-M. Palladium-catalyzed cyclization reactions of allenes in the presence of unsaturated carbon–carbon bonds. Acc. Chem. Res. 47, 989–1000 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Blieck, R., Taillefer, M. & Monnier, F. Metal-catalyzed intermolecular hydrofunctionalization of allenes: easy access to allylic structures via the selective formation of C–N, C–C, and C–O bonds. Chem. Rev. 120, 13545–13598 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Krause, N. & Hashmi, A. S. K. Modern Allene Chemistry (Wiley, 2004).

  8. Yoshida, Y., Murakami, K., Yorimitsu, H. & Oshima, K. Rhodium-catalyzed arylzincation of terminal allenes providing allylzinc reagents and its application to versatile three-component coupling reaction. J. Am. Chem. Soc. 132, 8878–8879 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Song, M. & Montgomery, J. Nickel-catalyzed couplings and cyclizations involving allenes, aldehydes, and organozincs. Tetrahedron 61, 11440–11448 (2005).

    Article  CAS  Google Scholar 

  10. Oisaki, K., Zhao, D., Kanai, M. & Shibasaki, M. Catalytic enantioselective alkylative aldol reaction: efficient multicomponent assembly of dialkylzincs, allenic esters, and ketones toward highly functionalized δ-lactones with tetrasubstituted chiral centers. J. Am. Chem. Soc. 129, 7439–7443 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Chai, G.-B., Wu, S.-Z., Fu, C.-L. & Ma, S.-M. A straightforward synthesis of cyclobutenones via a tandem Michael addition/cyclization reaction of 2,3-allenoates with organozincs. J. Am. Chem. Soc. 133, 3740–3743 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Dai, J.-X., Wang, M.-Y., Chai, G.-B., Fu, C.-L. & Ma, S.-M. A practical solution to stereodefined tetrasubstituted olefins. J. Am. Chem. Soc. 138, 2532–2535 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Wu, X.-Q., Wang, C.-L., Liu, N., Qu, J.-P. & Chen, Y.-F. Nickel-catalyzed acylzincation of allenes with organozincs and CO. Nat. Commun. 14, 6960–6967 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fujii, Y., Terao, J., Kuniyasu, H. & Kambe, N. Silylation and alkylation of allenes using chlorosilanes and alkylhalides in the presence of palladium catalyst and Grignard reagents. J. Organomet. Chem. 692, 375–381 (2007).

    Article  CAS  Google Scholar 

  15. Lu, Z., Chai, G. & Ma, S.-M. Iron-catalyzed highly regio- and stereoselective conjugate addition of 2,3-allenoates with Grignard reagents. J. Am. Chem. Soc. 129, 14546–14547 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Chen, B., Lu, Z., Chai, G., Fu, C. & Ma, S.-M. An efficient double 1,2-addition reaction of 2,3-allenoates with allyl magnesium chloride. J. Org. Chem. 73, 9486–9489 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Chai, G., Lu, Z., Fu, C. & Ma, S.-M. Ferric chloride hexahydrate-catalyzed highly regio- and stereoselective conjugate addition reaction of 2,3-allenoates with Grignard reagents: an efficient synthesis of β,γ-alkenoates. Adv. Synth. Catal. 351, 1946–1954 (2009).

    Article  CAS  Google Scholar 

  18. Lee, S., Lee, S. & Lee, Y. Copper-catalyzed hydroalumination of allenes with diisobutylaluminum hydride: synthesis of allylic ketones with α-quaternary centers via tandem allylation/Oppenauer oxidation. Org. Lett. 22, 5806–5810 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Chang, H.-M. & Cheng, C.-H. Highly regioselective and stereoselective allylation of aldehydes via palladium-catalyzed in situ hydrostannylation of allenes. Org. Lett. 2, 3439–3442 (2020).

    Article  Google Scholar 

  20. Yang, F.-Y. et al. Highly regio- and stereoselective acylboration, acylsilation, and acylstannation of allenes catalyzed by phosphine-free palladium complexes: an efficient route to a new class of 2-acylallylmetal reagents. J. Am. Chem. Soc. 125, 12576–12583 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Shirakawa, E., Nakao, Y., Yoshida, H. & Hiyama, T. Nickel-catalysed acylstannylation of 1,2-dienes: synthesis and reactions of α-(acylmethyl)vinylstannanes. Chem. Commun. 37, 263–264 (2001).

    Article  Google Scholar 

  22. Shirakawa, E., Nakao, Y., Tsuchimotoa, T. & Hiyama, T. Synthesis of polycyclic compounds utilizing the nickel-catalysed alkynylstannylation of 1,2-dienes. Chem. Commun. 7, 1962–1963 (2002).

    Article  Google Scholar 

  23. Nakao, Y., Shirakawa, E., Tsuchimoto, T. & Hiyama, T. J. Nickel-catalyzed acylstannylation and alkynylstannylation of 1,2-dienes. Organometal. Chem. 689, 3701–3721 (2004).

    Article  CAS  Google Scholar 

  24. Li, L.-J. et al. Recent advances in Mn, Fe, Co, and Ni-catalyzed organic reactions. CCS Chem. 6, 537–584 (2024).

    Article  CAS  Google Scholar 

  25. Hu, M.-Y. et al. Ligands with 1,10-phenanthroline scaffold for highly regioselective iron-catalyzed alkene hydrosilylation. Nat. Commun. 9, 221–231 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hu, M.-Y., Lian, J., Sun, W., Qiao, T.-Z. & Zhu, S.-F. Iron-catalysed di-hydrosilylation of alkynes: efficient access to geminal bis(silanes). J. Am. Chem. Soc. 141, 4579–4583 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Hu, M.-Y. et al. Iron-catalyzed regiodivergent alkyne hydrosilylation. J. Am. Chem. Soc. 142, 16894–16902 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Sun, W. et al. Phenanthroline-imine ligands for iron-catalyzed alkene hydrosilylation. Chem. Sci. 13, 2721–2728 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li, W.-T., Hu, M.-Y., Xiong, J.-W., Zhang, X.-Y. & Zhu, S.-F. Iron-catalyzed hydroalumination of internal alkynes. Chem. Sci. 13, 7873–7879 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang, Q. et al. Iron-catalyzed vinylzincation of terminal alkynes. J. Am. Chem. Soc. 144, 515–526 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Huang, Q., Wang, W.-N. & Zhu, S.-F. Iron-catalyzed alkylzincation of terminal alkynes. ACS Catal. 12, 2581–2588 (2022).

    Article  CAS  Google Scholar 

  32. Wang, W.-N., Huang, Q., Jin, Y., Zhou, Q.-L. & Zhu, S.-F. Iron-catalyzed alkenylzincation of internal alkynes. Chin. J. Chem. 41, 3547–3552 (2023).

    Article  CAS  Google Scholar 

  33. Stüdemann, T., Ibrahim-Ouali, M. & Knochel, P. A nickel-catalyzed carbozincation of aryl-substituted alkynes. Tetrahedron 54, 1299–1316 (1998).

    Article  Google Scholar 

  34. Gagneur, S., Montchamp, J.-L. & Negishi, E.-i Ehylzincation of monosubstituted alkenes catalyzed by EtMgBr−Cl2ZrCp2 and palladium-catalyzed cross coupling of the resultant diisoalkylzinc derivatives. Organometallics 19, 2417–2419 (2000).

    Article  CAS  Google Scholar 

  35. Gourdet, B. & Lam, H. W. Stereoselective synthesis of multisubstituted enamides via rhodium-catalyzed carbozincation of ynamides. J. Am. Chem. Soc. 131, 3802–3803 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Murakami, K., Yorimitsu, H. & Oshima, K. Cobalt-catalyzed arylzincation of alkynes. Org. Lett. 11, 2373–2375 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Corpet, M. & Gosmini, C. Cobalt-catalysed synthesis of highly substituted styrene derivatives via arylzincation of alkynes. Chem. Commun. 48, 11561–11563 (2012).

    Article  CAS  Google Scholar 

  38. Wu, J.-L. & Yoshikai, N. Cobalt-catalyzed alkenylzincation of unfunctionalized alkynes. Angew. Chem. Int. Ed. 55, 336–340 (2016).

    Article  CAS  Google Scholar 

  39. Kadikova, R. N., Ramazanov, I. R., Gabdullin, A. M., Mozgovoi, O. S. & Dzhemilev, U. M. Carbozincation of substituted 2-alkynylamines, 1-alkynylphosphines, 1-alkynylphos-phine sulfides with Et2Zn in the presence of catalytic system of Ti(O-iPr)4 and EtMgBr. Catalysts 9, 1022–1032 (2019).

    Article  CAS  Google Scholar 

  40. Richmond, E. & Moran, J. Ligand control of E/Z selectivity in nickel-catalyzed transfer hydrogenative alkyne semireduction. J. Org. Chem. 80, 6922–6929 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Bouwkamp, M. W., Bowman, A. C., Lobkovsky, E. & Chirik, P. J. Iron-catalyzed [2π + 2π] cycloaddition of α,ω-dienes: the importance of redox-active supporting ligands. J. Am. Chem. Soc. 128, 13340–13341 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Kennedy, C. R. et al. Iron-catalyzed vinylsilane dimerization and cross-cycloadditions with 1,3-dienes: probing the origins of chemo- and regioselectivity. ACS Catal. 11, 1368–1379 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yu, Y., Smith, J. M., Flaschenriem, C. J. & Holland, P. L. Binding affinity of alkynes and alkenes to low-coordinate iron. Inorg. Chem. 45, 5742–5751 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Bart, S. C., Lobkovsky, E. & Chirik, P. J. Preparation and molecular and electronic structures of iron(0) dinitrogen and silane complexes and their application to catalytic hydrogenation and hydrosilation. J. Am. Chem. Soc. 126, 13794–13807 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Lu, T. & Chen, F.-W. Atomic dipole moment corrected Hirshfeld population method. J. Theor. Comput. Chem. 11, 163–183 (2012).

    Article  CAS  Google Scholar 

  46. Soriano, E. & Fernández, I. Allenes and computational chemistry: from bonding situations to reaction mechanisms. Chem. Soc. Rev. 43, 3041–3105 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Parr, R. G. & Yang, W.-T. Density functional approach to the frontier-electron theory of chemical reactivity. J. Am. Chem. Soc. 106, 4049–4050 (1984).

    Article  CAS  Google Scholar 

  48. Lu, T. & Chen, F.-W. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–59 (2012).

    Article  PubMed  Google Scholar 

  49. Oláh, J., Alsenoy, C. V. & Sannigrahi, A. B. Condensed Fukui functions derived from stockholder charges: assessment of their performance as local reactivity descriptors. J. Phys. Chem. A 106, 3885–3890 (2002).

    Article  Google Scholar 

  50. Yang, W.-T. & Mortier, W. J. The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. J. Am. Chem. Soc. 108, 5708–5711 (1986).

    Article  CAS  PubMed  Google Scholar 

  51. Qin, C. et al. Chemical synthesis and antigenicity evaluation of Shigella dysenteriae serotype 10 O-antigen tetrasaccharide containing a (S)-4,6-O-pyruvyl ketal. J. Am. Chem. Soc. 144, 21068–21079 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Bruin, B., Bill, E., Bothe, E., Weyhermüller, T. & Wieghardt, K. Molecular and electronic structures of bis(pyridine-2,6-diimine)metal complexes [ML2](PF6)n (n = 0, 1, 2, 3; M = Mn, Fe, Co, Ni, Cu, Zn). Inorg. Chem. 39, 2936–2947 (2000).

    Article  PubMed  Google Scholar 

  53. Anderson, N. H. et al. Harnessing redox activity for the formation of uranium tris(imido) compounds. Nat. Chem. 6, 919–926 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Yang, X., Yuan, C. & Ge, S. Ligand-enabled stereodivergence in nickel-catalyzed regioselective hydroboration of internal allenes. Chem. 9, 198–215 (2023).

    Article  CAS  Google Scholar 

  55. He, P. et al. A case study on spin-state effect of iron catalysis. Natl Sci. Rev. https://doi.org/10.1093/nsr/nwad324 (2023).

  56. Zhang, Y.-D. et al. Highly regioselective cobalt-catalyzed hydroboration of internal alkynes. Angew. Chem. Int. Ed. 61, e202208473 (2022).

    Article  CAS  Google Scholar 

  57. Viton, F., Bernardinelli, G. & Kündig, E. P. Iron and ruthenium Lewis acid catalyzed asymmetric 1,3-dipolar cycloaddition reactions between nitrones and enals. J. Am. Chem. Soc. 124, 4968–4969 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Albright, H. et al. Catalytic carbonyl-olefin metathesis of aliphatic ketones: iron(III) homo-dimers as Lewis acidic superelectrophiles. J. Am. Chem. Soc. 141, 1690–1700 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the National Key R&D Program of China (2021YFA1500200), National Natural Science Foundation of China (22301230, 22221002 and 92256301), Haihe Laboratory of Sustainable Chemical Transformations, Fundamental Research Funds for the Central Universities and New Cornerstone Science Foundation through the XPLORER PRIZE for financial support.

Author information

Authors and Affiliations

Authors

Contributions

S.-F.Z. supervised the project. S.-F.Z. and J.-J.C. conceived the idea. J.-J.C. and M.-H.G. designed and carried out the experiments. M.-H.G. and P.H. designed and performed the DFT studies. J.-J.C., M.-H.G., P.H., M.-Y.H. and X.-Y.Z. analysed data. All authors discussed the results and contributed to writing the manuscript.

Corresponding author

Correspondence to Shou-Fei Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes, Methods and Tables 1–12.

Supplementary Data 1

Crystallographic data of T11.

Supplementary Data 2

CIF (Crystallographic Information File) report of T11.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, JJ., Guan, MH., He, P. et al. Iron-catalysed alkenylzincation of allenes via electrophilicity reversal. Nat Catal 8, 178–186 (2025). https://doi.org/10.1038/s41929-025-01293-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41929-025-01293-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载