+
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A smart framework to design membranes for organic micropollutants removal

Abstract

Developing polymeric membranes that effectively remove organic micropollutants (OMPs) is important for water management. However, the structural diversity and physiochemical variability of OMPs make it challenging to develop such membranes. Here we present a data-mechanism-integrated approach to assist membrane design. This approach integrates molecular fingerprint and physical models within the machine learning framework to quantify how functional groups in OMPs affect removal by polymeric membranes and to elucidate the removal mechanisms. We uncovered an anomalous multigroup coupling effect in membrane-based OMP removal and showed that the efficiency of removal depends on the influence of the functional group coupling in the molecular structure. This finding challenges the conventional approach in membrane screening and design that focuses on the properties of isolated functional groups. By combining this knowledge with assessments of OMP types and membrane properties, we reveal a comprehensive interaction framework for tailoring OMP-removal membranes. Overall, the data-mechanism co-driven paradigm has the potential to facilitate the development of advanced water-treatment membranes, eventually contributing to sustainable water management and the preservation of a safe water environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Construction of DMF-MRL.
Fig. 2: Quantification of the importance of OMP primary substructures by DMF-MRL.
Fig. 3: Quantification of the importance of OMPs’ secondary substructures by DMF-MRL.
Fig. 4: Construction of interaction knowledge framework.
Fig. 5: The design of OMP-removal membranes.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available in the paper and its Supplementary Information files.

Code availability

The model files used in this work are accessible on GitHub (https://github.com/effortV/A-smart-framework-to-design-membranes-for-organic-micropollutants-removal.git).

References

  1. Christou, A. et al. Sustainable wastewater reuse for agriculture. Nat. Rev. Earth Environ. 5, 504–521 (2024).

    Article  CAS  Google Scholar 

  2. Alsbaiee, A. et al. Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer. Nature 529, 190–194 (2016).

    Article  CAS  Google Scholar 

  3. Guidelines for Drinking-Water Quality 4th edn (WHO, 2022); https://www.who.int/teams/environment-climate-change-and-health/water-sanitation-and-health/water-safety-and-quality/drinking-water-quality-guidelines

  4. Shannon, M. et al. Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008).

    Article  CAS  Google Scholar 

  5. Yao, Y. et al. High performance polyester reverse osmosis desalination membrane with chlorine resistance. Nat. Sustain. 4, 138–146 (2021).

    Article  Google Scholar 

  6. Huang, J. et al. Polymeric membranes with highly homogenized nanopores for ultrafast water purification. Nat. Sustain. 7, 901–909 (2024).

    Article  Google Scholar 

  7. Lu, D. et al. Separation mechanism, selectivity enhancement strategies and advanced materials for mono-/multivalent ion-selective nanofiltration membrane. Adv. Membr. 2, 100032 (2022).

    Article  Google Scholar 

  8. Liang, Y. et al. Polyamide nanofiltration membrane with highly uniform sub-nanometer pores for sub-1 Å precision separation. Nat. Commun. 11, 2015 (2020).

    Article  CAS  Google Scholar 

  9. Tan, Z. et al. Polyamide membranes with nanoscale Turing structures for water purification. Science 360, 518–521 (2018).

    Article  CAS  Google Scholar 

  10. Giorno, L. Membranes that filter and destroy pollutants. Nat. Nanotechnol. 17, 334–335 (2022).

    Article  CAS  Google Scholar 

  11. Liu, Y. L. et al. Exploring the interactions of organic micropollutants with polyamide nanofiltration membranes: a molecular docking study. J. Membr. Sci. 577, 285–293 (2019).

    Article  CAS  Google Scholar 

  12. Guo, H. et al. Does hydrophilic polydopamine coating enhance membrane rejection of hydrophobic endocrine-disrupting compounds? Environ. Sci. Technol. Lett. 3, 332–338 (2016).

    Article  CAS  Google Scholar 

  13. Zha, Z. et al. Interlayer-modulated polyamide composite membrane for organic solvent nanofiltration. J. Membr. Sci. 647, 120306 (2022).

    Article  CAS  Google Scholar 

  14. Wang, P. et al. Strong improvement of nanofiltration performance on micropollutant removal and reduction of membrane fouling by hydrolyzed-aluminum nanoparticles. Water Res. 175, 115649 (2020).

    Article  CAS  Google Scholar 

  15. Khoo, Y. S. et al. Removal of emerging organic micropollutants via modified-reverse osmosis/nanofiltration membranes: a review. Chemosphere 305, 135151 (2022).

    Article  CAS  Google Scholar 

  16. Ratchnashree, S. R. et al. Advanced technologies for the determination of quantitative structure-activity relationships and degradation efficiency of micropollutants and their removal in water—a review. Sci. Total Environ. 904, 166563 (2023).

    Article  CAS  Google Scholar 

  17. Lin, Y. L. et al. Improving the organic and biological fouling resistance and removal of pharmaceutical and personal care products through nanofiltration by using in situ radical graft polymerization. Sci. Total Environ. 635, 543–550 (2018).

    Article  CAS  Google Scholar 

  18. Ma, X. et al. Revealing key structural and operating features on water/salts selectivity of polyamide nanofiltration membranes by ensemble machine learning. Desalination 548, 116293 (2023).

    Article  CAS  Google Scholar 

  19. Ritt, C. L. et al. Machine learning reveals key ion selectivity mechanisms in polymeric membranes with subnanometer pores. Sci. Adv. 8, eabl5771 (2022).

    Article  CAS  Google Scholar 

  20. Priya, P. et al. Machine learning assisted screening of two-dimensional materials for water desalination. ACS Nano 16, 1929–1939 (2022).

    Article  CAS  Google Scholar 

  21. Zhu, T. Y. et al. Prediction of organic contaminant rejection by nanofiltration and reverse osmosis membranes using interpretable machine learning models. Sci. Total Environ. 857, 159348 (2023).

    Article  CAS  Google Scholar 

  22. Jeong, N. et al. Exploring the knowledge attained by machine learning on ion transport across polyamide membranes using explainable artificial intelligence. Environ. Sci. Technol. 57, 17851–17862 (2023).

    Article  CAS  Google Scholar 

  23. Tayara, A. et al. Machine learning models for predicting the rejection of organic pollutants by forward osmosis and reverse osmosis membranes and unveiling the rejection mechanisms. Water Res. 266, 122363 (2024).

    Article  CAS  Google Scholar 

  24. Hu, A. et al. A machine learning based framework to tailor properties of nanofiltration and reverse osmosis membranes for targeted removal of organic micropollutants. Water Res. 268, 122677 (2025).

    Article  CAS  Google Scholar 

  25. Jeong, N. et al. Elucidating governing factors of PFAS removal by polyamide membranes using machine learning and molecular simulations. Nat. Commun. 15, 10918 (2024).

    Article  CAS  Google Scholar 

  26. Wang, H. J. et al. Understanding rejection mechanisms of trace organic contaminants by polyamide membranes via data-knowledge codriven machine learning. Environ. Sci. Technol. 58, 5878–5888 (2024).

    Article  CAS  Google Scholar 

  27. Wang, M. et al. Accelerating discovery of high fractional free volume polymers from a data-driven approach. ACS Appl. Mater. Interfaces 14, 31203–31215 (2022).

    Article  CAS  Google Scholar 

  28. Mahlangu, T. O. et al. Role of permeate flux and specific membrane-foulant-solute affinity interactions (∆Gslm) in transport of trace organic solutes through fouled nanofiltration (NF) membranes. J. Membr. Sci. 518, 203–215 (2016).

    Article  CAS  Google Scholar 

  29. Wang, R. et al. Pore model for nanofiltration: history, theoretical framework, key predictions, limitations, and prospects. J. Membr. Sci. 620, 118809 (2021).

    Article  CAS  Google Scholar 

  30. Jeong, N. et al. Predicting micropollutant removal by reverse osmosis and nanofiltration membranes: is machine learning viable? Environ. Sci. Technol. 55, 11348–11359 (2021).

    Article  CAS  Google Scholar 

  31. Liu, Y. L. et al. Boosting the performance of nanofiltration membranes in removing organic micropollutants: trade-off effect, strategy evaluation, and prospective development. Environ. Sci. Technol. 56, 15220–15237 (2022).

    Article  CAS  Google Scholar 

  32. Breitner, L. N. et al. Effect of functional chemistry on the rejection of low-molecular weight neutral organics through reverse osmosis membranes for potable reuse. Environ. Sci. Technol. 53, 11401–11409 (2019).

    Article  CAS  Google Scholar 

  33. Dan, L. et al. Ensemble machine learning reveals key structural and operational features governing ion selectivity of polyamide nanofiltration membranes. Desalination 564, 116748 (2023).

    Article  Google Scholar 

  34. Lesovoy, D. M. et al. NMR relaxation parameters of methyl groups as a tool to map the interfaces of helix–helix interactions in membrane proteins. J. Biomol. NMR 69, 165–179 (2017).

    Article  CAS  Google Scholar 

  35. Heiranian, M. et al. Mechanisms and models for water transport in reverse osmosis membranes: history, critical assessment, and recent developments. Chem. Soc. Rev. 52, 8455–8480 (2023).

    Article  CAS  Google Scholar 

  36. Wang, L. et al. Water transport in reverse osmosis membranes is governed by pore flow, not a solution-diffusion mechanism. Sci. Adv. 9, eadf8488 (2023).

    Article  CAS  Google Scholar 

  37. Wang, F. F. et al. Experiments and machine learning-based modeling for haloacetic acids rejection by nanofiltration: influence of solute properties and operating conditions. Sci. Total Environ. 883, 163610 (2023).

    Article  CAS  Google Scholar 

  38. Lin, S. S. et al. A zwitterion-like, charge-balanced ultrathin layers on polymeric membranes for antifouling property. Environ. Sci. Technol. 52, 4457–4463 (2018).

    Article  CAS  Google Scholar 

  39. Niu, C. et al. Artificial intelligence-incorporated membrane fouling prediction for membrane-based processes in the past 20 years: a critical review. Water Res. 216, 118299 (2022).

    Article  CAS  Google Scholar 

  40. Liang, L. et al. Machine learning in membrane science: bridging materials, structures, and performance for next-generation membrane design. Sep. Purif. Technol. 369, 133091 (2025).

    Article  CAS  Google Scholar 

  41. Gao, H. et al. Revolutionizing membrane design using machine learning Bayesian optimization. Environ. Sci. Technol. 56, 2572–2581 (2022).

    Article  CAS  Google Scholar 

  42. Cao, Z. et al. Machine learning in membrane design: from property prediction to AI-guided optimization. Nano Lett. 24, 2953–2960 (2024).

    Article  CAS  Google Scholar 

  43. Donnan, F. G. Theory of membrane equilibria and membrane potentials in the presence of non-dialysing electrolytes. A contribution to physical-chemical physiology. J. Membr. Sci. 100, 45–55 (1995).

    Article  CAS  Google Scholar 

  44. Van Oss, C. J. Acid—base interfacial interactions in aqueous media. Colloids Surf. A 78, 1–49 (1993).

    Article  Google Scholar 

  45. Kima, S. et al. Interactions controlling biopolymer fouling of reverse osmosis membranes. Desalination 202, 333–342 (2007).

    Article  Google Scholar 

  46. Subramani, A. et al. Direct observation of initial microbial deposition onto reverse osmosis and nanofiltration membranes. J. Membr. Sci. 319, 111–125 (2008).

    Article  CAS  Google Scholar 

  47. Guo, J. et al. Temperature dependency of the apolar surface tension component for water and its role in classifying apolar and polar interfacial interactions. J. Phys. Chem. C 127, 18167–18175 (2023).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Key R&D Program of China (2023YFB3810900), the National Natural Science Foundation of China (22138010 and 52261145697), the ‘Pioneer’ and ‘Leading Goose’ R&D Program of Zhejiang (2024C03132), the Fundamental Research Funds for the Central Universities (226-2024-00091), Ecological Civilization Project of Zhejiang University, the China Postdoctoral Science Foundation (2023M742997) and the CRSRI Open Research Program (CKWV20231180/KY) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

D.L., L.L. and L.Z. conceived of the idea and designed the research. Z.Z. and T.L. performed the DMF-MRL deployment. D.L. and X.X. performed the membrane fabrications and characterizations. D.L. and M.W. performed the MD simulations. D.L., X.X., Y.G., Y.L., S.X. and C.Z. constructed the combinatorial database. Z.G., J.-W.S. and Z.Y. provided constructive suggestions for the results and discussion. D.L., L.L. and L.Z. contributed to the writing of the paper. All authors discussed the results.

Corresponding authors

Correspondence to Lijun Liang or Lin Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Yongsheng Chen, Tiezheng Tong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–37, Tables 1–9, Discussion and References.

Reporting Summary

Supplementary Data 1

Database.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, D., Zhao, Z., Xiang, X. et al. A smart framework to design membranes for organic micropollutants removal. Nat Sustain 8, 1177–1189 (2025). https://doi.org/10.1038/s41893-025-01617-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41893-025-01617-6

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载