+
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Current collector interphase design for high-energy and stable anode-less sodium batteries

Subjects

Abstract

Sodium-ion batteries have emerged as one of the most promising next-generation energy storage systems. However, their widespread application is hindered by the low energy density and high cost of hard carbon anodes. Anode-free designs offer a potential solution but typically suffer from poor cycling performance due to uncontrolled Na plating and inefficient stripping. Here we report a hard-carbon-derived interphase on an aluminium current collector to construct an anode-less sodium battery (ALSB) that maintains high energy density, reduces costs and enhances cycling stability. Remarkably, the interphase layer with a low dielectric constant and strong Na interaction enables homogeneous Na nucleation, crack-free plating and efficient stripping, thereby minimizing active Na loss during cycling. As a result, our ALSB maintains good stability for up to 900 cycles and 2.3-Ah-level ALSBs show an energy density of 203 Wh kg−1. Our findings pave the way for more sustainable batteries with competitive energy density, extended cycle life and lower costs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Influence of CC modifiers on the initial Na nucleation/plating.
Fig. 2: CEs and morphologies of Na plating/stripping on various interphases.
Fig. 3: Criteria of CC interphases for ALSBs.
Fig. 4: Electrochemical performance of Al~HC||Na half cells.
Fig. 5: Electrochemical performance of ALSB full cells.

Similar content being viewed by others

Data availability

All data are available in the main text or Supplementary Information, which can also be available from the corresponding author upon request. Source data are provided with this paper.

References

  1. Li, Y. et al. Interfacial engineering to achieve an energy density of over 200 Wh kg−1 in sodium batteries. Nat. Energy 7, 511–519 (2022).

    Article  CAS  Google Scholar 

  2. Jin, Y. et al. Low-solvation electrolytes for high-voltage sodium-ion batteries. Nat. Energy 7, 718–725 (2022).

    Article  CAS  Google Scholar 

  3. Hu, Z. et al. Current progress of anode-free rechargeable sodium metal batteries: origin, challenges, strategies, and perspectives. Adv. Funct. Mater. 34, 2313823 (2024).

    Article  CAS  Google Scholar 

  4. Molaiyan, P. et al. Optimizing current collector interfaces for efficient ‘anode-free’ lithium metal batteries. Adv. Funct. Mater. 34, 2311301 (2024).

    Article  CAS  Google Scholar 

  5. Wang, H. et al. 3D Ag@C cloth for stable anode free sodium metal batteries. Small Methods 5, e2001050 (2021).

    Article  Google Scholar 

  6. Cohn, A. P., Muralidharan, N., Carter, R., Share, K. & Pint, C. L. Anode-free sodium battery through in situ plating of sodium metal. Nano Lett. 17, 1296–1301 (2017).

    Article  CAS  Google Scholar 

  7. Huang, F., Xu, P., Fang, G. & Liang, S. In-depth understanding of interfacial Na+ behaviors in sodium metal anode: migration, desolvation, and deposition. Adv. Mater. 36, 2405310 (2024).

    Article  CAS  Google Scholar 

  8. Deng, Y. et al. Highly reversible sodium metal battery anodes via alloying heterointerfaces. Small 18, e2203409 (2022).

    Article  Google Scholar 

  9. Gong, C. et al. The role of an elastic interphase in suppressing gas evolution and promoting uniform electroplating in sodium metal anodes. Energy Environ. Sci. 16, 535–545 (2023).

    Article  CAS  Google Scholar 

  10. Wang, C. et al. Extending the low-temperature operation of sodium metal batteries combining linear and cyclic ether-based electrolyte solutions. Nat. Commun. 13, 4934 (2022).

    Article  CAS  Google Scholar 

  11. Chen, J. et al. High energy density Na-metal batteries enabled by a tailored carbonate-based electrolyte. Energy Environ. Sci. 15, 3360–3368 (2022).

    Article  CAS  Google Scholar 

  12. Bai, M. et al. An anodeless, mechanically flexible and energy/power dense sodium battery prototype. Energy Environ. Sci. 15, 4686–4699 (2022).

    Article  CAS  Google Scholar 

  13. Jiao, W. et al. Critical role of pressure for chemo-mechanical-induced stability of sodium metal battery anodes. ACS Energy Lett. 8, 2711–2717 (2023).

    Article  CAS  Google Scholar 

  14. Li, Y. et al. Ether-based electrolytes for sodium ion batteries. Chem. Soc. Rev. 51, 4484–4536 (2022).

    Article  CAS  Google Scholar 

  15. Mo, L. et al. Asymmetric sodiophilic host based on a Ag-modified carbon fiber framework for dendrite-free sodium metal anodes. ACS Appl. Mater. Interfaces 13, 48634–48642 (2021).

    Article  CAS  Google Scholar 

  16. Xu, F. et al. Atomic Sn–enabled high-utilization, large-capacity, and long-life Na anode. Sci. Adv. 8, eabm7489 (2022).

    Article  CAS  Google Scholar 

  17. Tang, S. et al. A room-temperature sodium metal anode enabled by a sodiophilic layer. Nano Energy 48, 101–106 (2018).

    Article  CAS  Google Scholar 

  18. Li, T. et al. Superior sodium metal anodes enabled by sodiophilic carbonized coconut framework with 3D tubular structure. Adv. Energy Mater. 11, 2003699 (2020).

    Article  Google Scholar 

  19. Xie, Y. et al. Encapsulating sodium deposition into carbon rhombic dodecahedron guided by sodiophilic sites for dendrite-free Na metal batteries. Energy Storage Mater. 30, 1–8 (2020).

    Article  Google Scholar 

  20. Luo, J. et al. Pillared MXene with ultralarge interlayer spacing as a stable matrix for high performance sodium metal anodes. Adv. Funct. Mater. 29, 1805946 (2018).

    Article  Google Scholar 

  21. Yan, K. et al. Dendrite-free sodium metal batteries enabled by the release of contact strain on flexible and sodiophilic matrix. Nano Lett. 20, 6112–6119 (2020).

    Article  CAS  Google Scholar 

  22. Wang, Z. et al. 3D-printed sodiophilic V2CTx/rGO-CNT MXene microgrid aerogel for stable Na metal anode with high areal capacity. ACS Nano 16, 9105–9116 (2022).

    Article  CAS  Google Scholar 

  23. Lu, Q. et al. Dendrite-free and corrosion-resistant sodium metal anode for enhanced sodium batteries. Appl. Surf. Sci. 600, 154168 (2022).

    Article  CAS  Google Scholar 

  24. Boyle, D. T. et al. Corrosion of lithium metal anodes during calendar ageing and its microscopic origins. Nat. Energy 6, 487–494 (2021).

    Article  CAS  Google Scholar 

  25. Cui, C. et al. Unlocking the in situ Li plating dynamics and evolution mediated by diverse metallic substrates in all-solid-state batteries. Sci. Adv. 8, eadd2000 (2022).

    Article  CAS  Google Scholar 

  26. Jian, Z. et al. Insights on the mechanism of Na-ion storage in soft carbon anode. Chem. Mater. 29, 2314–2320 (2017).

    Article  CAS  Google Scholar 

  27. Wu, Z. et al. Growing single-crystalline seeds on lithiophobic substrates to enable fast-charging lithium-metal batteries. Nat. Energy 8, 340–350 (2023).

    CAS  Google Scholar 

  28. Wang, C. et al. High dielectric barium titanate porous scaffold for efficient Li metal cycling in anode-free cells. Nat. Commun. 12, 6536 (2021).

    Article  CAS  Google Scholar 

  29. Liu, Y. et al. Low-temperature potassium batteries enabled by electric and thermal field regulation. Angew. Chem. Int. Ed. 62, e202300016 (2023).

    Article  CAS  Google Scholar 

  30. Adams, B. D., Zheng, J., Ren, X., Xu, W. & Zhang, J. G. Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 8, 1702097 (2017).

    Article  Google Scholar 

  31. Wang, G. et al. 2D Sn/C freestanding frameworks as a robust nucleation layer for highly stable sodium metal anodes with a high utilization. Nano Energy 79, 105457 (2021).

    Article  CAS  Google Scholar 

  32. Xu, Y. et al. Sodium deposition with a controlled location and orientation for dendrite-free sodium metal batteries. Adv. Energy Mater. 10, 2002308 (2020).

    Article  CAS  Google Scholar 

  33. Lee, K. et al. A 3D hierarchical host with enhanced sodiophilicity enabling anode-free sodium-metal batteries. Adv. Mater. 34, 2109767 (2022).

    Article  CAS  Google Scholar 

  34. Wang, G. et al. Core-shell C@Sb nanoparticles as a nucleation layer for high-performance sodium metal anodes. Nano Lett. 20, 4464–4471 (2020).

    Article  CAS  Google Scholar 

  35. Wu, J. et al. Sodium-rich NASICON-structured cathodes for boosting the energy density and lifespan of sodium-free-anode sodium metal batteries. InfoMat 4, e12288 (2022).

    Article  CAS  Google Scholar 

  36. Zhuang, Y. et al. Ion-conductive gradient sodiophilic 3D scaffold induced homogeneous sodium deposition for highly stable sodium metal batteries. Nano Energy 97, 107202 (2022).

    Article  CAS  Google Scholar 

  37. Li, H. et al. Sodiophilic current collectors based on MOF-derived nanocomposites for anode-less Na-metal batteries. Adv. Energy Mater. 12, 2202293 (2022).

    Article  CAS  Google Scholar 

  38. Hasa, I., Hassoun, J., Sun, Y.-K. & Scrosati, B. Sodium-ion battery based on an electrochemically converted NaFePO4 cathode and nanostructured tin–carbon anode. ChemPhysChem 15, 2152–2155 (2014).

    Article  CAS  Google Scholar 

  39. Li, Y. et al. Air-stable copper-based P2-Na7/9Cu2/9Fe1/9Mn2/3O2 as a new positive electrode material for sodium-ion batteries. Adv. Sci. 2, 1500031 (2015).

    Article  Google Scholar 

  40. López, M. C. et al. High performance full sodium-ion cell based on a nanostructured transition metal oxide as negative electrode. Chem. Eur. J. 21, 14879–14885 (2015).

    Article  Google Scholar 

  41. Chen, H.-Y. et al. A multi-walled carbon nanotube core with graphene oxide nanoribbon shell as anode material for sodium ion batteries. Adv. Mater. Interfaces 3, 1600357 (2016).

    Article  Google Scholar 

  42. Ren, W. et al. Cathodic polarization suppressed sodium-ion full cell with a 3.3 V high-voltage. Nano Energy 28, 216–223 (2016).

    Article  CAS  Google Scholar 

  43. Li, X. et al. The importance of solid electrolyte interphase formation for long cycle stability full-cell Na-ion batteries. Nano Energy 27, 664–672 (2016).

    Article  CAS  Google Scholar 

  44. Fan, M. et al. Half-cell and full-cell applications of highly stable and binder-free sodium ion batteries based on Cu3P nanowire anodes. Adv. Funct. Mater. 26, 5019–5027 (2016).

    Article  CAS  Google Scholar 

  45. Xu, Z.-L. et al. Tailoring sodium intercalation in graphite for high energy and power sodium ion batteries. Nat. Commun. 10, 2598 (2019).

    Article  Google Scholar 

  46. Chen, W. et al. High-performance flexible freestanding anode with hierarchical 3D carbon-networks/Fe7S8/graphene for applicable sodium-ion batteries. Adv. Mater. 31, 1806664 (2019).

    Article  Google Scholar 

  47. Thompson, A. P. et al. LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comp. Phys. Commun. 271, 10817 (2022).

    Article  Google Scholar 

  48. Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Z. Li, M. Wang, H. Ji and R. Jiang from Fudan University for their assistance in preparing some of the CCs. This work was financially supported by the National Natural Science Foundation of China (no. 52261135631 and no. 52103335; F.W.), the Postdoctoral Innovation Talents Support Program of China (BX2021067; J.R.), the China Postdoctoral Science Foundation (no. 2022M710711; J.R.), and the Science and Technology Commission of Shanghai Municipality (no. 2024ZDSYS02; F.W.).

Author information

Authors and Affiliations

Authors

Contributions

J.R. and F.W. conceived the idea for the project. J.R., Y.S., S.Z., D.S., F.F. and F.W. designed the experiments. Q.L. and S.L. assembled the anode-less pouch cell. J.R., Q.L., J.Y. and Y.L. performed the characterization experiments. J.R. and J.H. performed the theoretical calculation. J.R. and F.W. wrote the paper. All authors discussed the results and commented on the paper.

Corresponding author

Correspondence to Fei Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Shuo Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–61, Tables 1–9 and references.

Reporting Summary

Supplementary Video 1

Sodium deposition behaviour.

Supplementary Data 1

Sodium deposition behaviour under the weak substrate–Na and Na–Na interactions.

Supplementary Data 2

Sodium deposition behaviour under the weak substrate–Na and strong Na–Na interactions.

Supplementary Data 3

Sodium deposition behaviour under the strong substrate–Na and weak Na–Na interactions.

Supplementary Data 4

Sodium deposition behaviour under the strong substrate–Na and Na–Na interactions.

Source data

Source Data Fig. 1

The raw data of points and lines not directly shown in the figure.

Source Data Fig. 2

The raw data of points and lines not directly shown in the figure.

Source Data Fig. 3

The raw data of points and lines not directly shown in the figure.

Source Data Fig. 4

The raw data of points and lines not directly shown in the figure.

Source Data Fig. 5

The raw data of points and lines not directly shown in the figure.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruan, J., Hu, J., Li, Q. et al. Current collector interphase design for high-energy and stable anode-less sodium batteries. Nat Sustain (2025). https://doi.org/10.1038/s41893-025-01545-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41893-025-01545-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载