Table 9 Optimizing Big Data Policy: a comparison of carbon reduction in cities selected by the original policy and the policy learning model.
From: Mechanism conflicts: carbon reduction pathways and optimization in China’s Big Data Policy
DID | \({\hat{\varGamma }}_{i}\) | Policy Learning | \({\hat{\varGamma }}_{i}\) | DID | \({\hat{\varGamma }}_{i}\) | Policy Learning | \({\hat{\varGamma }}_{i}\) |
---|---|---|---|---|---|---|---|
Panel A: GRF | |||||||
Sanmenxia | −9.426 | Sanmenxia | −9.426 | Foshan | 0.408 | Panzhihua | −1.702 |
Zhoukou | −6.102 | Zhoukou | −6.102 | Shenzhen | 0.466 | Sanya | −1.692 |
Chengde | −5.567 | Chengde | −5.567 | Zhuhai | 0.472 | Shantou | −1.688 |
Xinxiang | −4.930 | Xinxiang | −4.930 | Shijiazhuang | 0.490 | Shuangyashan | −1.674 |
Langfang | −4.119 | Langfang | −4.119 | Hohhot | 0.520 | Nanjing | −1.643 |
Xuchang | −3.090 | Xuchang | −3.090 | Puyang | 0.578 | Pingxiang | −1.631 |
Nanyang | −2.494 | Nanyang | −2.494 | Pingdingshan | 0.749 | Luoyang | −1.629 |
Zhaoqing | −2.329 | Zhaoqing | −2.329 | Dongguan | 0.881 | Zhuzhou | −1.602 |
Jiangmen | −2.075 | Jiangmen | −2.075 | Shenyang | 0.951 | Harbin | −1.587 |
Zhumadian | −2.034 | Ezhou | −2.055 | Shanghai | 1.032 | Shuozhou | −1.576 |
Zhangjiakou | −2.005 | Zhumadian | −2.034 | Zhongshan | 1.135 | Datong | −1.561 |
Luoyang | −1.629 | Zhangjiakou | −2.005 | Hebi | 1.505 | Xiamen | −1.554 |
Xinyang | −1.258 | Xiangtan | −1.919 | Luohe | 1.535 | Yichun | −1.536 |
Shangqiu | −1.081 | Yinchuan | −1.753 | Qinhuangdao | 1.629 | Karamay | −1.522 |
Kaifeng | −0.822 | Hezhou | −1.753 | Anyang | 1.704 | Anqing | −1.496 |
Anshun | −0.815 | Jinchang | −1.731 | Beijing | 1.757 | Rizhao | −1.494 |
Zhengzhou | −0.279 | Haikou | −1.725 | Tianjin | 2.476 | Zibo | −1.486 |
Huizhou | −0.143 | Qitaihe | −1.706 | Chongqing | 3.811 | Hangzhou | −1.470 |
Guangzhou | 0.345 | Taiyuan | −1.704 | Jiaozuo | 4.597 | Guiyang | −1.468 |