Table 9 Optimizing Big Data Policy: a comparison of carbon reduction in cities selected by the original policy and the policy learning model.

From: Mechanism conflicts: carbon reduction pathways and optimization in China’s Big Data Policy

DID

\({\hat{\varGamma }}_{i}\)

Policy Learning

\({\hat{\varGamma }}_{i}\)

DID

\({\hat{\varGamma }}_{i}\)

Policy Learning

\({\hat{\varGamma }}_{i}\)

Panel A: GRF

Sanmenxia

−9.426

Sanmenxia

−9.426

Foshan

0.408

Panzhihua

−1.702

Zhoukou

−6.102

Zhoukou

−6.102

Shenzhen

0.466

Sanya

−1.692

Chengde

−5.567

Chengde

−5.567

Zhuhai

0.472

Shantou

−1.688

Xinxiang

−4.930

Xinxiang

−4.930

Shijiazhuang

0.490

Shuangyashan

−1.674

Langfang

−4.119

Langfang

−4.119

Hohhot

0.520

Nanjing

−1.643

Xuchang

−3.090

Xuchang

−3.090

Puyang

0.578

Pingxiang

−1.631

Nanyang

−2.494

Nanyang

−2.494

Pingdingshan

0.749

Luoyang

−1.629

Zhaoqing

−2.329

Zhaoqing

−2.329

Dongguan

0.881

Zhuzhou

−1.602

Jiangmen

−2.075

Jiangmen

−2.075

Shenyang

0.951

Harbin

−1.587

Zhumadian

−2.034

Ezhou

−2.055

Shanghai

1.032

Shuozhou

−1.576

Zhangjiakou

−2.005

Zhumadian

−2.034

Zhongshan

1.135

Datong

−1.561

Luoyang

−1.629

Zhangjiakou

−2.005

Hebi

1.505

Xiamen

−1.554

Xinyang

−1.258

Xiangtan

−1.919

Luohe

1.535

Yichun

−1.536

Shangqiu

−1.081

Yinchuan

−1.753

Qinhuangdao

1.629

Karamay

−1.522

Kaifeng

−0.822

Hezhou

−1.753

Anyang

1.704

Anqing

−1.496

Anshun

−0.815

Jinchang

−1.731

Beijing

1.757

Rizhao

−1.494

Zhengzhou

−0.279

Haikou

−1.725

Tianjin

2.476

Zibo

−1.486

Huizhou

−0.143

Qitaihe

−1.706

Chongqing

3.811

Hangzhou

−1.470

Guangzhou

0.345

Taiyuan

−1.704

Jiaozuo

4.597

Guiyang

−1.468