Table 2 Micro-F1, macro-F1 and AUROC results for the prediction of COVID-19 in-hospital death.

From: Potential and limitations of machine meta-learning (ensemble) methods for predicting COVID-19 mortality in a large inhospital Brazilian dataset

 

Macro-F1

Micro-F1

Precision-death

Recall-death

Log loss

AUROC

Stacking

0.654

0.821

0.562

0.354

6.032

0.826

LGBM

0.648

0.825

0.555

0.345

6.177

0.824

Lasso + population meta-features

0.633

0.816

0.550

0.319

6.355

0.794

STACKING + population meta-features

0.631

0.809

0.544

0.320

6.593

0.759

GAM

0.630

0.813

0.565

0.309

6.456

0.620

RF + population meta-features

0.626

0.816

0.581

0.299

6.338

0.811

LGBM + population meta-features

0.625

0.812

0.563

0.301

6.504

0.751

CNN1D

0.625

0.776

0.422

0.412

7.721

0.721

SVM + population meta-features

0.619

0.814

0.561

0.281

6.421

0.782

Resnet50

0.617

0.780

0.458

0.381

7.588

0.764

RF

0.617

0.817

0.584

0.275

6.317

0.809

GAM + population meta-features

0.616

0.817

0.580

0.279

6.323

0.609

FNet

0.611

0.779

0.439

0.350

7.642

0.720

SVM

0.608

0.814

0.574

0.255

6.424

0.813

LASSO

0.595

0.809

0.555

0.241

6.611

0.811

Resnet50 + RBF-kernel

0.593

0.752

0.383

0.371

8.577

0.698

  1. List of model names from top to bottom (ordered by MacF1): CNN = convolutional neural network, FNet = fourier transformation neural network, FNet + VAT = fourier transformation neural network with virtual adversarial training, GAM = generalized additive models, KNN = K-nearest neighbors, LASSO = least absolute shrinkage and selection operator regression, LGBM = light gradient boosting machines, RF = random forest, SVM = support vector machines, Resnet50 = Residual Neural Network (with 50 residual blocks), STACKING = a stacking classifier, which combines all others.