Table 2 Micro-F1, macro-F1 and AUROC results for the prediction of COVID-19 in-hospital death.
Macro-F1 | Micro-F1 | Precision-death | Recall-death | Log loss | AUROC | |
|---|---|---|---|---|---|---|
Stacking | 0.654 | 0.821 | 0.562 | 0.354 | 6.032 | 0.826 |
LGBM | 0.648 | 0.825 | 0.555 | 0.345 | 6.177 | 0.824 |
Lasso + population meta-features | 0.633 | 0.816 | 0.550 | 0.319 | 6.355 | 0.794 |
STACKING + population meta-features | 0.631 | 0.809 | 0.544 | 0.320 | 6.593 | 0.759 |
GAM | 0.630 | 0.813 | 0.565 | 0.309 | 6.456 | 0.620 |
RF + population meta-features | 0.626 | 0.816 | 0.581 | 0.299 | 6.338 | 0.811 |
LGBM + population meta-features | 0.625 | 0.812 | 0.563 | 0.301 | 6.504 | 0.751 |
CNN1D | 0.625 | 0.776 | 0.422 | 0.412 | 7.721 | 0.721 |
SVM + population meta-features | 0.619 | 0.814 | 0.561 | 0.281 | 6.421 | 0.782 |
Resnet50 | 0.617 | 0.780 | 0.458 | 0.381 | 7.588 | 0.764 |
RF | 0.617 | 0.817 | 0.584 | 0.275 | 6.317 | 0.809 |
GAM + population meta-features | 0.616 | 0.817 | 0.580 | 0.279 | 6.323 | 0.609 |
FNet | 0.611 | 0.779 | 0.439 | 0.350 | 7.642 | 0.720 |
SVM | 0.608 | 0.814 | 0.574 | 0.255 | 6.424 | 0.813 |
LASSO | 0.595 | 0.809 | 0.555 | 0.241 | 6.611 | 0.811 |
Resnet50 + RBF-kernel | 0.593 | 0.752 | 0.383 | 0.371 | 8.577 | 0.698 |