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Cellular senescence, defined as a state of permanent arrest in cell growth, is regarded as a crucial 
tumor suppression mechanism. However, accumulating scientific evidence suggests that senescent 
cells play a detrimental role in the progression of cancer. Unfortunately, the current lack of reliable 
markers that specifically reflect the level of senescence in cancer greatly hinders our in-depth 
understanding of this important biological foundation. Therefore, the search for more specific and 
reliable markers to reveal the specific role of senescent cells in cancer progression is particularly urgent 
and important. To uncover the role of senescence in gliomas, we collected senescence-related genes for 
integrated analysis. Consensus clustering was used to subtype gliomas based on the senescence gene 
set, and we identified two robust prognostic clusters of gliomas with distinct survival outcomes, multi-
omics landscapes, immune characteristics, and differential drug responses. Multiple external datasets 
were used to validate the stability of our subtypes. Various computational and experimental methods, 
including WGCNA (Weighted Gene Co-expression Network Analysis), ssGSEA (single-sample Gene Set 
Enrichment Analysis), and machine learning algorithms (lasso regression, support vector machines, 
random forests), were employed for analysis. We found that CEBPB and LMNA are associated with 
poor prognosis in gliomas and may mediate immunosuppression and tumor proliferation. Drug 
prediction indicated that dasatinib is a potential therapeutic agent. Our findings provide insights into 
the role of the senescence gene set in patient stratification and precision medicine.
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The prevalence of cancer is a pressing concern in public health, as both the frequency of new cases and the 
number of deaths caused by the disease increase each year. The United States recorded a total of 1.9 million new 
cases of cancer and 609,360 deaths caused by cancer in 20221. Gliomas, characterized by their infiltrative growth 
pattern resembling “crab claws” within the brain, do not have a distinct boundary separating them from normal 
brain tissue. This characteristic complicates complete surgical resection, as residual tumor cells can easily lead 
to recurrence. Furthermore, gliomas have a regenerative and proliferative “leek-like” nature, with the degree of 
malignancy potentially increasing as the disease progresses, thereby complicating treatment and worsening the 
prognosis. Another difficulty arises from the intricate nature of the tumor microenvironment (TME) in patients, 
referred to as interpatient heterogeneity2. Given the unclear molecular pathways involved in the development 
and spread of tumors, coupled with the limited effectiveness of conventional treatments, it is imperative to clarify 
the subtypes of glioma to facilitate precision medicine.

The process of aging significantly increases the likelihood of developing a range of diseases, such as diabetes, 
cardiovascular diseases, neurological disorders, and cancer. The buildup and long-lasting presence of senescent 
cells in the body are characteristic signs of aging, leading to a steady decline in both regular and disease-related 
biological functions3. Recent studies have utilized multi-omics techniques to investigate the intricate connection 
between aging and cancer, given their close association. These studies have combined epigenomic, exomic, 
and transcriptome data from large-scale datasets to gain a better understanding of this connection4–6. These 
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results indicate that aging and cancer share common features that could serve as therapeutic targets, offering 
important insights into cancer incidence and management. Additionally, some research has revealed differences 
in molecular patterns across cancer patients of different ages, indicating that age can influence the effectiveness 
of immune checkpoint therapy and potentially offer new indicators for diagnosis and treatment7,8. Although 
these studies have focused primarily on the aging process across the entire lifespan, they have failed to address 
tumor senescence irrespective of patient age.

Apart from elderly individuals, a minority of young people have an uncommon yet lethal condition known 
as Hutchinson‒Gilford progeria syndrome, which results in fast aging. This finding indicates the existence of 
regulatory mechanisms that affect the aging process beyond just chronological age9. Furthermore, an abnormal 
increase in oncogenic signals or deactivation of tumor suppressor genes in cells can trigger a cellular response 
called oncogene-induced senescence (OIS), which acts as a barrier to tumorigenesis by halting cell proliferation10. 
Tumor cells that are subjected to exogenous damage, such as radiation therapy and chemotherapy, display 
dormancy characteristics as a result of therapy-induced senescence (TIS)11. However, recent research has 
revealed that senescent cells play a key role in promoting tumor phenotypes and are now recognized as novel 
characteristics of cancer12. These biological features suggest that mapping the senescence landscape in gliomas 
can assist in accurately categorizing patients and informing treatment choices.

In this study, we collected senescence-related genes and identified two robust clusters of senescence-
associated genes based on their gene set characteristics, which we named PMA-high and PMA-low according 
to their expression profile features. These two subgroups exhibit distinct survival outcomes, clinical traits, 
tumor microenvironment characteristics, somatic mutation spectra, chromosomal copy number variations, 
infiltration of hallmark gene sets, and responses to immunotherapy, as well as marked differences in drug 
treatment responses. The PMA-high subgroup is characterized by poor prognosis, enrichment of oncogenic 
pathways, immunosuppression, and diverse mutations. Drug prediction suggests that dasatinib may reverse the 
prognosis associated with the PMA-high signature. Additionally, we extracted a 200-gene signature to quantify 
our classification. Subsequently, we employed differential analysis, Weighted Gene Co-expression Network 
Analysis (WGCNA), single-sample Gene Set Enrichment Analysis (ssGSEA), and machine learning to identify 
biomarkers for the PMA glioma subtype. Ultimately, we determined that CEBPB and LMNA are not only 
biomarkers of poor prognosis in glioma patients but also key targets in the senescence model of glioma.

Overall, this study proposes the existence of senescence-based subtypes in gliomas, enhancing the 
understanding of how senescence impacts tumor biology and patient outcomes. These findings highlight the 
potential of using senescence-related biomarkers for personalized treatment strategies and underscore the 
importance of further research into senescence-related mechanisms and their role in cancer progression.

Materials and methods
Data acquisition and processing
Transcriptome expression data and clinical data were obtained from The Cancer Genome Atlas (TCGA) database 
(https://portal.gdc.cancer.gov/) and the Chinese Glioma Genome Atlas (CGGA) database ​(​​​h​t​t​p​:​/​/​w​w​w​.​c​g​g​a​.​o​r​
g​.​c​n​​​​​)​​​1​3​–18. The external dataset is sourced from Gliovis, and the drug treatment data is derived from the GEO 
database (GSE159609)19. Additionally, genomic mutation data for gliomas were acquired from the GDC Data 
Portal (https://www.example.com).

Clustering analysis of glioma patients
A total of 368 aging-associated genes were identified (Table S1). Unsupervised clustering analysis was performed 
via the R package CancerSubtypes to select the most suitable number of clusters, and the k-means algorithm 
was used to perform clustering for a range of 2–6 clusters with a cutoff of 0.00120. The delta area and consensus 
cumulative distribution function (CDF) determined that the most suitable clustering solution was k = 2. The 
associations of the two identified clusters with clinical phenotypes were examined, highlighting significant 
distinctions between the subtypes. The R package limma was used to conduct differential gene expression 
analysis, identifying genes that were differentially expressed between the two clusters. The Gene Ontology 
(GO) database was used to evaluate biological process (BP), molecular function (MF), and cellular component 
(CC) categories. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database21–23 was utilized to analyze 
pathways associated with the identified genes, and specific gene sets were analyzed to provide a more detailed 
understanding of the functions and interactions of the identified SRGs.

WGCNA
WGCNA was conducted to find modules linked to the two identified clusters24. The computation of the ideal 
value for the soft-thresholding power was led by the scale-free topology criterion, with the minimum module 
size set to 50 genes. Modules were identified via the dynamic tree cut method, with the MEDissThres parameter 
set at 0.25.

Somatic mutation analysis
Differences in somatic mutations between clusters were investigated25. The R package maftools were used to 
visualize the mutation landscape, estimate mutational allele tumor heterogeneity (MATH), determine the 
tumor mutation burden (TMB), and evaluate the occurrence of coexistence and mutual exclusivity events. The 
chi-square test was used to evaluate whether the distribution of specific gene mutations differed significantly 
between the two clusters, with a P value < 0.05 considered significant.
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TME characterization
The R software package ESTIMATE26 was used to predict immune and stromal scores for individual tumor 
samples. The ESTIMATE score was computed to provide an overall estimate of nontumor cell infiltration within 
the TME. Features from the TISIDB portal were used to elucidate tumor-immune cell interactions. ssGSEA was 
performed to quantify the relative abundance of various immune cell types within the TME27. The R package 
IOBR was used to assess features indicative of immune exhaustion, suppression, and exclusion within the TME28.

Machine learning model construction and gene intersection analysis
Machine learning techniques, including RF, LASSO regression, and SVM, were employed to analyze the data. 
Differential analysis was initially performed on the two subtypes, followed by an intersection with module-
related genes from the WGCNA results to identify differentially expressed genes (DEGs) associated with traits. 
Survival analysis was conducted via the R packages survival and survminer, with coxPfilter = 0.05 as the filtering 
criterion, to identify prognosis-related genes. The intersection of these genes yielded core prognostic genes.

Immunohistochemistry
The tissue sections embedded in paraffin were dewaxed and rehydrated, followed by microwave antigen retrieval. 
The tissues were then blocked with 0.3% hydrogen peroxide solution for 30 min. Primary antibodies against 
CEBPB (Proteintech, Cat No. 23431–1-AP, 1:200) and LMNA (Servicebio, GB152400-100, 1:500) were added 
dropwise to the tissues and incubated overnight at 4 °C. Subsequently, the tissue samples were incubated with 
biotinylated secondary antibodies at room temperature for 10 min. After incubation, the samples were stained 
with diaminobenzidine (DAB) and hematoxylin. Fluorescent images were captured using a microscope.

Statistical analysis
Statistical analyses were performed via R software version 4.3.0 (https://www.R-project.org/), and graphical plots 
were generated via GraphPad 8.0. The Wilcoxon test was used to compare two paired groups, whereas analysis 
of variance (ANOVA) was used for comparisons among three or more groups. The log-rank test was performed 
via the R package Survminer to compare the survival distributions of the two groups. P values less than 0.05 were 
considered statistically significant.

Results
SRG expression defines distinct glioma subgroups with prognostic implications
We identified a total of 368 senescence-related genes from the literature, forming our final aging gene cluster. 
Using unsupervised clustering methods on the merged datasets (CCGA_325, and TCGA_693), glioma patients 
were stratified into two distinct clusters, the C1 and C2 clusters (Fig. 1A–D). Patients in the C2 cluster had a 
better prognosis than those in the C1 cluster (Fig. 1E). We designated C1 as PMA-high and C2 as PMA-low. 
The clinical characteristics of the samples indicated that the PMA-high subgroup had a greater proportion of 
grade IV gliomas, with 38 cases of WHO II (9%), 104 cases of WHO III (24%), and 299 cases of WHO IV 
(68%), in contrast to the PMA-low subgroup, which had 234 cases of WHO II (44%), 218 cases of WHO III 
(42%), and 75 cases of WHO IV (14%) (Fig. 1F). Additionally, an increase in the WHO grade was correlated 
with poorer patient prognosis (Fig. 1G). We further assessed the distribution of PMA in relation to different 
IDH statuses. In the PMA-low subgroup, 398 cases (81%) were IDH_Mutant, and 92 cases (19%) were IDH_
Wildtype, whereas the PMA-high subgroup consisted of 102 cases (24%) IDH_Mutant and 329 cases (76%) 
IDH_Wildtype (Fig. 1H). Patients with IDH_Wild-type status had a significantly worse prognosis than those 
with IDH_Mutant status (Fig. 1I), with all the observed differences reaching statistical significance (P < 0.01). 
Subsequently, in the study of high-grade gliomas, we conducted an in-depth analysis based on the classification 
system proposed by Verhaak et al. in 201029, namely Classical, Mesenchymal, Proneural, and Neural subtypes, as 
well as the two DNA methylation (DNAm) subgroups identified by Drexler et al. in 202430. We performed a one-
to-one correspondence study between the subgroups from these two studies and our PMA_High and PMA_low 
subtypes and found that the PMA-high subtype often exhibits consistency with the subgroup associated with 
poorer prognosis (Figure S1A).

Immune characteristics of glioma subclusters
The tumor microenvironment (TME) encompasses the interplay between malignant tumor cells, immune 
cells, and stromal cells, which collectively promote or inhibit tumor progression. We employed the ESTIMATE 
algorithm to assess the overall TME status across two aging clusters. Notably, the immune scores, stromal scores, 
and ESTIMATE scores were all highest in the PAM-high cluster, indicating a more abundant composition of 
immune and stromal cells within this subtype (Fig. 2A). Analysis of immune function and immune cell profiles 
revealed enhanced malignant proliferation in the PMA-high cluster. Specifically, certain pathways and immune 
signatures, particularly human leukocyte antigen (HLA), C–C chemokine receptor (CCR), and T cell co-
inhibition, were significantly more active or prevalent in the PMA-high cluster. However, TH1 cells, which play 
a crucial role in anti-tumor immunity by directly killing tumor cells, promoting adaptive immune responses, 
and modulating the TME, exhibited subdued activity in the PAM-high cluster, suggesting a higher degree of 
malignancy and cachexia in PAM-high tumors. To better evaluate the immune status between subgroups, we 
calculated Cytolytic Scores for the PMA subtypes (Fig. 2C). Cytolytic Score is a biomarker that reflects the cancer 
immune status by assessing the cytolytic activity of immune cells in the TME, calculated as the geometric mean 
of mRNA expression levels of granzyme A (GZMA) and perforin 1 (PRF1). Our study found that higher CYT 
scores were associated with an immunosuppressive TME and poorer survival prognosis, consistent with previous 
research. Additionally, we conducted a CIBERSORT analysis of immune cell infiltration in the subgroups, which 
revealed a higher enrichment of Macrophages M2 in the PMA-HIGH cluster (Fig. 2D). TIDE immunotherapy 
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prediction indicated that PMA-low patients were more likely to benefit from immunotherapy (Fig. 2E PMA_L: 
PMA_H = 56.8%:31%). Furthermore, the TIDE total score, exclusion score (Exclusion), dysfunction score 
(Dysfunction), CD274 (also known as programmed death-ligand 1, PD-L1), and Cancer-Associated Fibroblasts 
(CAF) were all higher in PMA_H (Fig.  2E–J), suggesting weakened T cell activity and cytolytic capacity, 
severe dysfunction, and the exclusion of tumor cells from the tumor tissue, which renders them ineffective in 
attacking and killing tumor cells, leading to immunotherapy insensitivity. Subsequently, we conducted drug 
prediction on the two subpopulations, focusing primarily on the efficacy of senescence-targeting drugs and 
broad-spectrum anticancer drugs. The results revealed that the PMA_H is more likely to benefit from treatment 
with the senescence-targeting drug dasatinib and the broad-spectrum anticancer drug fluorouracil (Figure 
S1B-1C). To validate our findings, we retrieved and obtained glioma sample data related to dasatinib treatment 
studies (GSE159609) from the GEO database. After performing differential analysis to identify differentially 
expressed genes (Figure S1D-1E), despite the limitation imposed by the sample size, we observed a reversal in 
pathways that were originally upregulated in the PMA_H, such as HALLMARK_MYC_SIGNALING, PI3K_

Fig. 1.  SRG expression defines distinct glioma subgroups with prognostic implications. (A)–(C) Identification 
of glioma prognosis subgroups using SRGs; (D) Heatmap of prognosis subgroups; (E) Subgroup C1 (PMA_H) 
exhibits poor prognosis. (F, G) Proportion and prognosis of PMA in WHO grades. (H, I) Proportion and 
prognosis of PMA in IDH status.
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AKT_MTOR_SIGNALING, and KEGG_MAPK_SIGNALING_PATHWAY, following drug treatment (Figure 
S1F-1G). Additionally, the infiltration level of M2 macrophages decreased after drug treatment (Figure S1H).

Pathway activation and functional differences across glioma subtypes
Through differential analysis of the subtypes, we identified a total of 1579 differential genes (Fig.  3A, Table 
s2). Further analysis utilizing the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, Gene Set 
Enrichment Analysis (GSEA), and specific gene set analysis revealed that the PAM-high subtype specifically 
activated the MAPK signaling pathway, cell cycle, FoxO signaling pathway, and Wnt signaling pathway (Fig. 3B). 
These signaling pathways are generally closely related to the initiation and progression of tumors as well as the 
aging process.

Fig. 2.  Immune molecular functional landscape of glioma subtypes. (A) Differences in immune 
microenvironment-related scores among subtypes; (B) score distribution of immune cells and immune 
functions among subtypes; (C) differences in cytolytic scores among subtypes; (D) CIBERSORT immune cell 
infiltration; (E) distribution of TIDE immunotherapy response between two subtypes; (F) TIDE Scores of Two 
Subtypes; (G) EXCLUSION scores of two subtypes; (H) dysfunction scores of two subtypes; (I) proportion of 
CD247 between two subtypes; (J) proportion of CAFs between two subtypes.
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In addition, through hallmark gene set GSEA analysis, we observed that the PAM-high subtype upregulated 
gene sets related to epithelial-mesenchymal transition (HALLMARK_EPITHELIAL_MESENCHYMAL_
TRANSITION), interferon-gamma response (HALLMARK_INTERFERON_GAMMA_RESPONSE), and 
tumor necrosis factor (TNF) signaling via the NF-κB pathway (HALLMARK_TNFA_SIGNALING_VIA_NFKB) 
(Fig. 3C–E). Concurrently, the activation of the Notch signaling pathway, JAK/AKT signaling pathway, and NF-
κB signaling pathway, which are closely associated with aging features, were also prominent characteristics of 
the PAM-high subtype (Fig. 3F).

In contrast, in the PMA-high subtype, we observed downregulation of HALLMARK_KRAS_SIGNALING_
DN (downregulation of KRAS signaling pathway) and HALLMARK_PANCREAS_BETA_CELLS (gene set 
related to pancreatic beta cells) (Fig. 3G).

Further, GO (Gene Ontology) analysis suggested that these differential genes are closely related to biological 
processes such as DNA-binding transcription factor binding, GTPase regulatory activity, proteasome-mediated 
ubiquitin-dependent protein catabolic process, and regulation of nervous system development, implying that 
the PAM-high subtype may possess proliferation-related characteristics (Fig. 3H, I).

Fig. 3.  Pathway Activation and Functional Differences between Glioma Subtypes. (A) Volcano plot of 
differentially expressed genes between subgroups; (B) KEGG pathway analysis of differentially expressed genes 
identifying prognosis-related pathways in subgroups; (C)–(E) An overview of the upregulation of 50 hallmark 
gene sets; (F) The aging-related pathway is upregulated in PMA-high; (G) An overview of the downregulation 
of 50 hallmark gene sets; (H, I) GO analysis differences between subgroups identified by differentially 
expressed genes.
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Multi-omics characteristics of glioma subtypes: genomic variations, mutational burden, and 
chromosomal copy number variations
We aimed to construct a scoring system to accurately quantify the characteristics of aging genes in glioma. By 
downloading and merging all samples from TCGA_LGG and TCGA_GBM (TCGA RNAseq) through CGGA, 
and excluding those samples with missing survival time and status, we retained data from 603 glioma patients 
as our validation dataset. We identified the 100 genes with the most significant differences between the two 
subtypes and quantified their expression in the validation set (Fig. 4A). Analysis of the TCGA database indicated 
that the PMA-high subtype was associated with poor prognosis (Fig. 4B). We subsequently stratified the data 
via the CMOIC, NTP, and PMA clustering methods. The consistency between different clustering methods was 
quantified via the kappa value and P value from consensus matrix analysis (Fig. 4C–E). High consistency was 
observed among CMOIC, NTP, and PMA clustering (Kappa values of 0.834, 0.892, and 0.924, respectively, with 
P values < 0.001), indicating considerable accuracy and reliability in these classifications and predictions.

Fig. 4.  Genomic variations and mutation burden in glioma subtypes. (A) Heatmap of PMA subgroups 
validated in the TCGA dataset using 200 genes. (B) Prognosis validation. (C)–(E): Clustering validation and 
display of CMOIC, NTP, and PMA clusters. (F) Display of tumor mutation burden and clustering prognosis; 
(G) High tumor mutation burden in PMA_H. (H, I) Presentation of mutation burden genes in different 
clusters.
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We analyzed the TMB to account for genomic variations. The overall mutation spectrum revealed significant 
differences in TMB (Fig. 4G). The PMA-high subgroup had a higher TMB. Among the two subtypes, a greater 
mutation burden was correlated with a worse prognosis, with H-TMB + PMA-high patients having the poorest 
prognosis and L-TMB + PMA-low patients having the best prognosis (Fig. 4F). The top 25 highly mutated genes 
are presented for each cluster. Both subtypes frequently exhibited mutations in IDH1, TP53, and ATRX, but IDH1 
mutations were present in only 18% of the PMA-high patients compared with 89% of the PMA-low patients. 
The PMA-low subtype presented a greater frequency of mutations in TP53 (48%) and ATRX (40%) (Fig. 4H, I). 
Additionally, various low-frequency mutations, such as those in EGFR (1%) and PTEN (1%), were observed, 
which may affect different signaling pathways and the biological characteristics of glioma. In the PMA-high 
subgroup, the mutation spectrum was more complex and diverse. IDH1 mutations were present in 18% of the 
patients, with reduced frequencies of TP53 (34%) and ATRX (14%) mutations. New high-frequency mutations, 
such as CIC (21%) and NOTCH1 (7%), have emerged, reflecting different genetic backgrounds and disease 
processes. The presence of multiple low-frequency mutations in PMA-high patients suggests a more complex 
genetic background and greater heterogeneity, potentially promoting glioma progression and deterioration. 
Furthermore, gene copy number variation (CNV) analysis revealed significant differences in CNVs between 
the two subtypes. These differences were primarily observed on chromosomes 7, 9, and 10. Specifically, in the 
PMA_H subtype, we observed deletions in the regions 10q26.3, 10q23.31, and 9p21.3, as well as gains in the 
7p11.2 region. In contrast, chromosomal variations were generally not prominent in the PMA_L subtype, with 
the most notable deletion occurring in the 19q13.43 region and the most significant gain in the 7p32.3 region 
(Figure S1I-1 J).

In addition, we obtained the public cohort studies from Gravendel and Rembrandt as additional validation 
sets (Figure S2A-2H). The studies demonstrated that in both validation sets, PMA-H exhibited poor prognosis, 
high scores across various tumor microenvironment indicators, and immune cell and immune function scores 
that were consistent with those in the validation sets. Furthermore, the hallmark gene set scores were also found 
to be consistent with our test set.

Co-expression modules associated with glioma subtypes
The soft threshold power was determined as β = 11 (Fig.  5A) by applying the scale-free topology criterion. 
We next established co-expression modules with a cutting height ≥ 0.25. Hierarchical clustering analysis of 
modules within the same branch revealed comparable gene expression patterns (Fig. 5B–D). As a result, these 
gene modules with comparable characteristics were organized into eleven separate co-expression modules, 
each represented by a different color, such as gray, brown, blue, or yellow (Fig. 5E). We subsequently employed 
visualization techniques to represent the gene clusters and analyzed them to determine the relationships between 
different modules. The light green module was significantly correlated with the PMA-high subtype (Fig. 5F, G). 
This finding emphasizes the importance of further investigating the light green module, as shown in Table S3.

Core prognostic genes identified in glioma subtypes
A total of 898 module-related genes and 1,579 DEGs were identified. By intersecting these genes with the aging 
gene set, we identified 12 DEGs strongly associated with the PMA-high subtype (Fig. 6A). Univariate analysis of 
these DEGs revealed that each was an adverse prognostic factor in glioma (Fig. 6B). The clinical trait heatmap 
revealed the highest expression levels in the clinical group with poor prognosis (Fig. 6C), and high expression 
levels were particularly evident in the PMA-high group (Fig. 6D–A1). High expression was significantly 
associated with poor prognosis. We subsequently analyzed the 12 genes via LASSO regression, RF, and SVM 
methods. LASSO regression identified eight genes (Fig. 7A–C), SVM identified five genes, and RF identified 
seven genes. Considering the intersection of these results, we identified two core genes (Fig. 7D). Expression 
and survival analyses of CEBPB and LMNA, which use both TCGA and CCGA data, consistently indicated that 
these genes are not only biomarkers for poor prognosis in glioma patients but also key targets in the glioma aging 
model (Fig. 7E–H).

Expression characteristics of CEBPB and LMNA in glioma and their verification
To further delve into the expression characteristics and potential roles of CEBPB and LMNA in gliomas, we 
systematically analyzed the RNA and protein expression levels of these two genes in brain tumors using the 
TCGA database and the Human Protein Atlas database. The results indicated that the expression of CEBPB 
and LMNA is lower in normal brain tissue compared to gliomas, and they exhibit high expression levels in 80 
brain tumor cell lines, particularly in common glioma cell lines such as U87, LN229, and U251MG, where their 
expression is especially prominent (Fig.  8A–D). In gliomas of different grades, higher-grade gliomas exhibit 
higher expression levels of CEBPB and LMNA, which is confirmed by both CGGA and TCGA data (Fig. 8E, H). 
High expression of CEBPB and LMNA is more likely to benefit from the senescence-eliminating drug dasatinib 
(Fig.  8I, J). After drug treatment, the expression of both genes decreased compared to the untreated state. 
Although limited by sample size, the P value for LMNA did not reach statistical significance (P < 0.05), whereas 
CEBPB exhibited a significant response (Fig. 8K, L). Furthermore, we conducted a detailed analysis of gliomas of 
different grades and found that the expression levels of CEBPB and LMNA increased with the grade of gliomas, 
reaching the highest levels in glioblastoma. To validate this finding, we performed immunohistochemistry 
experiments, which further confirmed that the expression levels of CEBPB and LMNA were indeed higher in 
WHO grade III gliomas compared to WHO grade II gliomas (Fig. 8M–R). These findings provide important 
clues for our in-depth understanding of the roles of CEBPB and LMNA in the development and progression of 
gliomas.

In gliomas of different grades, higher-grade gliomas exhibit higher expression levels of CEBPB and LMNA, 
which is confirmed by both CGGA and TCGA data (Fig. 8E–H). High expression of CEBPB and LMNA is more 
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likely to benefit from the senescence-eliminating drug dasatinib (Fig. 8I, J). After drug treatment, the expression 
of both genes decreased compared to the untreated state. Although limited by sample size, the P value for LMNA 
did not reach statistical significance (P < 0.05), whereas CEBPB exhibited a significant response (Fig. 8K, L). 
Furthermore, we conducted a detailed analysis of gliomas of different grades and found that the expression 
levels of CEBPB and LMNA increased with the grade of gliomas, reaching the highest levels in glioblastoma. 
To validate this finding, we performed immunohistochemistry experiments, which further confirmed that the 
expression levels of CEBPB and LMNA were indeed higher in WHO grade III gliomas compared to WHO grade 
II gliomas (Fig. 8M–R). These findings provide important clues for our in-depth understanding of the roles of 
CEBPB and LMNA in the development and progression of gliomas.

Fig. 5.  Identification of Special Gene Groups by WGCNA. (A) Determination of the optimal scale-free 
index (β) and mean connectivity across various soft-thresholding powers; (B) gene dendrogram and module 
colors; (C) hierarchical clustering analysis; (D) gene dendrogram based on clustering results; (E) heatmap of 
correlations between module genes and two isoforms; (F, G) correlation between genes and PMA_H, and gene 
clustering diagram.
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Discussion
Glioma, the most common primary malignant tumor originating within the cranial cavity, is characterized 
by poor prognosis, high disability rates, and frequent recurrence, imposing a significant burden on patients, 
families, and society. Glioblastoma is the most malignant type of glioma. Even with the most extensive and 
safe removal of tumors through standard surgical procedures combined with concurrent temozolomide (TMZ) 
chemoradiotherapy, patients still have a median survival time of no more than 15 months. Unlike tumors in 
other organs, gliomas exhibit more complex characteristics, with malignant glioma cells demonstrating robust 
invasive capabilities early on and infiltrating surrounding normal tissues. Consequently, even if the tumor is 
completely resected, recurrence at the surgical margins is difficult to avoid31–33.

Previous research has revealed the dual role of cellular senescence in cancer. In the early stages, it inhibits 
tumorigenesis and limits malignant progression. Nevertheless, the persistence of the tumor can lead to the 
promotion of tumor growth, stimulation of invasion and migration, and inhibition of immune surveillance3,12,34,35. 

Fig. 6.  Identification of core prognostic genes. (A) SRG genes associated with the differential module in 
PMA_H. (B) Univariate analysis of SRG genes associated with the differential module in PMA_H. (C) 
Heatmap display of SRG genes associated with the differential module in PMA_H. (D)–(O) Expression of 
genes in glioma PMA. (P)–(A1): Prognosis of genes in glioma.
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Despite notable advancements in the examination of senescence markers such as senescence-associated 
β-galactosidase, p16, and p21, identifying specific and definitive markers for tumor senescence remains a major 
challenge.

The hallmarks of aging encompass genomic instability, epigenetic alterations, chronic inflammation, and 
gut microbiota dysbiosis, among others. The “driving factors” of cancer include the generation of sustained 
proliferative signals, evasion of growth suppression, resistance to cell death, acquisition of replicative immortality, 
induction of angiogenesis, and activation of invasion and metastasis12,36,37. During the process of human aging, 
cellular DNA accumulates various damages, such as point mutations, insertions, and deletions, which lead to 
genomic instability and subsequently trigger cellular senescence or death38. Notably, genomic instability is also 
a prominent feature of cancer cells, which continuously accumulate genetic mutations and exhibit chromosomal 
abnormalities, thereby gaining the ability to proliferate indefinitely.

Previous studies have revealed that senescence-associated secretory phenotypes play a crucial role 
in intercellular communication and exert a profound impact on the dynamic evolution of the tumor 

Fig. 7.  Machine learning-based screening of core genes for cluster prognosis. (A) Lasso regression analysis; 
(B) support vector machine analysis; (C) random forest analysis; (D) intersection of genes identified by three 
machine learning methods; (E, F) Expression of genes in glioma PMA (TCGA); (G, H) Prognosis of genes in 
glioma (TCGA).
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Fig. 8.  Expression characteristics of CEBPB and LMNA in glioma and their verification. (A) The expression 
of CEBPB in glioma is higher than that in normal tissue. (B) CEBPB expression in brain tumor cell lines; (C) 
the expression of LMNA in glioma is higher than that in normal tissue. (D) LMNA expression in brain tumor 
cell lines; (E) CEBPB expression in different grades of glioma (CGGA); (F) CEBPB expression in different 
grades of glioma (TCGA); (G) LMNA expression in different grades of glioma (CGGA); (H) LMNA expression 
in different grades of glioma (TCGA); (I) Drug prediction of dasatinib in different CEBPB groups; (J) Drug 
prediction of dasatinib in different LMNA groups; (K) Decreased CEBPB expression after dasatinib treatment; 
(L) Decreased LMNA expression after dasatinib treatment; (M)–(O) LMNA expression in normal and different 
grades of glioma; (P)–(R) CEBPB expression in normal and different grades of glioma.
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microenvironment (TME). Specifically, hypoxic adaptation, metabolic dysregulation, and phenotypic shifts in 
immune cells regulated by cellular senescence synergistically promote the development of an immunosuppressive 
microenvironment and chronic inflammation, thereby driving tumor progression.

Given that senescence is a characteristic feature of cancer and that the molecular classification of cancer 
aids in predicting specific targets for treatment, thereby driving the advancement of precision medicine39, 
investigating the role of senescence in glioma classification to guide clinical applications holds significant 
research importance.

In this study, we delved into the distinct roles played by 368 SRGs in gliomas. Drawing upon the foundational 
work by Verhaak et al. in 201029, which classified gliomas into classic, mesenchymal, proneural, and neural 
subtypes, and the recent study by Drexler et al. in 202430 that identified two DNA methylation (DNAm) 
subgroups within glioblastomas, our investigation revealed the existence of two distinct subtypes: PMA-high 
and PMA-low, based on glioma prognosis. The PMA-high subtype was found to be associated with poor 
prognosis and demonstrated varying distributions of glioma patients across WHO grades and IDH statuses in 
our sample analysis. Specifically, among 374 WHO grade IV patients, 299 (79.95%) were classified as PMA-high, 
whereas only 75 (20.05%) were PMA-low. Similarly, in the cohort of 421 IDH_Wild-type patients, 329 (78.14%) 
were identified as PMA-high, with 92 (21.85%) falling into the PMA-low category. Further analysis revealed 
significant variations in expression profiles, immunity, and hallmark gene set scores between the two subtypes, 
highlighting the heterogeneous nature of PMA-high patients. Moreover, the DEGs activated proliferation 
and immune function-related characteristics as well as various tumor-related pathways, including the MAPK 
signaling pathway, cell cycle regulation, the FoxO signaling pathway, and the Wnt signaling pathway. Specific 
gene set analysis further demonstrated that PMA-high upregulated signaling pathways such as HALLMARK_
EPITHELIAL_MESENCHYMAL_TRANSITION, HALLMARK_INTERFERON_GAMMA_RESPONSE, and 
HALLMARK_TNFA_SIGNALING_VIA_NFKB. Shedding light on the underlying molecular mechanisms 
contributing to the distinct prognostic outcomes. These pathways are closely linked to tumors and have been 
reported to be activated in various types of cancer40–44. Additionally, studies have suggested that the MAPK 
signaling pathway, NF-KB signaling pathway, PI3K/AKT signaling pathway, JAK/STAT signaling pathway, and 
NOTCH signaling pathway are associated with cellular senescence. Therefore, we investigated the activation 
status of these pathways in the two subgroups. Our research indicated that these pathways were activated in the 
PMA-HIGH subgroup. Moreover, the PAM-high subgroup harbors more chromosomal copy number variations, 
which aligns with an EMT-based subclassification. In cases with worse prognosis, there is often a higher tumor 
mutational burden and a greater occurrence of copy number variations.

To enhance the generalizability and reliability of our findings, we went beyond initial discoveries by validating 
our conclusions across multiple independent datasets. This approach confirmed the stability and reproducibility 
of our results, providing stronger support for our research. Mutation analysis further substantiated our subtype 
classification. Our data revealed a greater TMB in the PMA-high subgroup. Importantly, while mutations in 
IDH1, TP53, and ATRX were common in both subgroups, the IDH1 mutation rate was significantly different: 
18% in the PMA-high subgroup compared with 89% in the PMA-low subgroup. Furthermore, TP53 and ATRX 
exhibited distinct mutation patterns in the PMA-high subgroup, contributing to a more complex and diverse 
mutation spectrum. Despite the presence of IDH1 mutations (18%), the mutation frequencies of TP53 (34%) and 
ATRX (14%) were significantly lower. New high-frequency mutations, such as CIC (21%) and NOTCH1 (7%), 
were also identified. This mutation diversity may indicate different genetic backgrounds and disease processes, 
with multiple low-frequency mutations in PMA-high patients suggesting a more intricate genetic landscape and 
greater heterogeneity. The coexistence of these mutations could drive glioma progression and deterioration. 
Moreover, the PAM-high subgroup harbors more chromosomal copy number variations, which aligns with an 
EMT-based subclassification45. In cases with worse prognosis, there is often a higher tumor mutational burden 
and a greater occurrence of copy number variations.

We utilized various algorithms, including machine learning, to identify characteristic genes differentiating 
the two subtypes. Our studies consistently revealed that the genes encoding CEBPB and LMNA are not only 
biomarkers of poor prognosis in glioma patients but also critical targets in glioma senescence models. It has 
been reported in the literature that the expression of C/EBPbeta and STAT3 in human gliomas is associated 
with mesenchymal differentiation and portends poor clinical outcomes46, which is consistent with our findings. 
Specifically, CEBPB is highly expressed in tumors, particularly in the PMA-HIGH subgroup, where the 
expression of both CEBPB and LMNA is even more pronounced. Furthermore, CCL20 secreted by CRC cells 
can recruit Tregs through the FOXO1/CEBPB/NF-κB signaling pathway47, thereby promoting chemotherapy 
resistance. This suggests that the FOXO1/CEBPB/NF-κB/CCL20 axis may represent a promising therapeutic 
target for CRC treatment. In breast cancer, tumor glycolysis coordinates a molecular network involving the 
AMPK-ULK1, autophagy48, and CEBPB pathways to influence myeloid-derived suppressor cells (MDSCs) 
and maintain tumor immune suppression. In RCC cells, CEBPB enhances the expression of IL6, which in turn 
promotes the phosphorylation of STAT3 and the expression of its downstream target genes49. This mechanism 
ultimately facilitates tumor progression. Additionally, the NAT10/CEBPB/vimentin axis plays a crucial role in the 
malignant progression of salivary gland adenoid cystic carcinoma (SACC), and these findings could be leveraged 
to improve the treatment of SACC50. Collectively, these observations underscore the pivotal role of CEBPB in 
multiple types of tumors. Molecular characterization has revealed a novel LMNA-NTRK1 rearrangement on 
chromosome 1 with oncogenic potential. A patient harboring this rearrangement achieved a partial response to 
treatment with the pan-TRK inhibitor entrectinib, with the target liver lesions decreasing in size from 6.8 and 
8.2 cm in longest diameter to 4.7 and 4.3 cm, respectively51.

It is noteworthy that we conducted TIDE immunotherapy prediction and drug sensitivity analysis on different 
patient groups. The results showed that the immunotherapy response in the PMA_H was significantly inferior 
to that in the PMA_L. Specifically, patients in the PMA_L were more likely to benefit from immunotherapy, the 
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immunotherapy response rates for PMA_L and PMA_H were 56.8% and 31%, respectively). In addition, the 
TIDE total score, exclusion score, dysfunction score, CD274 (also known as programmed death ligand 1, PD-
L1) level, and cancer-associated fibroblasts (CAF) level were all higher in the PMA_H. This indicates that in the 
PMA_H, T-cell activity and lytic capacity were reduced, dysfunction was severe, and tumor cells were excluded 
from the tumor tissue, leading to immune cells being unable to effectively attack and kill tumor cells. Therefore, 
immunotherapy was not sensitive for patients in the PMA_H.

Drug sensitivity analysis also revealed that although patients in the PMA_H had a poorer prognosis, they 
seemed to benefit from treatment with the anti-aging drug dasatinib and the broad-spectrum antitumor drug 
fluorouracil. Multiple studies have shown that CEBPB and LMNA are highly expressed in malignant gliomas 
and are closely related to poor prognosis. Patients with high expression of CEBPB and LMNA are more likely to 
benefit from the senescence-eliminating drug dasatinib, and the expression levels of these two genes decreased 
after drug treatment. Although limited by sample size, the change in LMNA expression did not reach statistical 
significance (P  < 0.05), while the response of CEBPB was very significant.

Furthermore, we collected clinical samples for immunohistochemical experiments. The experimental results 
showed that the expression levels of CEBPB and LMNA increased with the grade of glioma in normal tissue and 
WHO grade II and III gliomas. This result is consistent with the findings from database analysis.

In this study, we conducted an in-depth analysis of the specific roles of 368 SRGs in gliomas. Using 
unsupervised clustering methods, we identified two distinct senescence-related clusters that exhibited significant 
differences in clinical traits, immune landscapes, mutation profiles, and TME infiltration. To accurately quantify 
the senescence gene sets and pinpoint molecular markers for the two subtypes, we conducted differential 
analysis, WGCNA, and survival analysis and used various machine learning techniques. These multifaceted 
analyses allowed us to identify key genes that not only explain the prognosis of different subpopulations but also 
enable precise and consistent classification of glioma samples, laying a strong foundation for future research.

While our multi-cohort integrative analysis and IHC validation strongly associate CEBPB/LMNA expression 
with distinct molecular subtypes and clinical outcomes, we acknowledge that functional validation of their 
mechanistic roles remains to be explored. Specifically, in vitro and in vivo model experiments are needed to 
dissect whether CEBPB and LMNA act as drivers or bystanders in shaping glioma phenotypes. In addition, the 
interactions between these biomarkers and canonical oncogenic pathways also require systematic investigation. 
These issues are currently the focus of our ongoing work. Importantly, the correlation patterns and preliminary 
protein-level evidence presented in this paper provide a testable framework for such hypothesis-driven research. 
We anticipate that elucidating these mechanisms will refine subtype-specific therapeutic strategies.

In summary, our molecular classification method based on SRGs provides a more accurate prediction of 
survival outcomes for glioma patients. This study offers insights into the impact of cellular senescence on gliomas, 
revealing two subtypes with significantly different prognostic characteristics and highlighting the inherent 
heterogeneity of gliomas. Moreover, our data provide a resource for understanding the complex relationship 
between senescence and cancer, potentially opening new avenues for research and therapeutic strategies.

Data availability
This data can be found here: The China Glioma Genome Atlas (CGGA) database (http://www.cgga.org.cn), 
The Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/), and Gene Expression Omnibus 
(https://www.ncbi.nlm.nih.gov/geo/).
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