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Rare disease detection and classification is one of the most significant challenges in the application of 
Natural Language Processing techniques to the analysis and extraction of information from biomedical 
texts. In this paper, we present a novel research focused on the detection and classification of rare 
diseases in clinical notes extracted from a cohort of pediatric patients from the Community of Madrid 
in Spain. From a set of collected and anonymized medical records, we propose a semi-supervised, 
keyphrase-based system to perform an initial detection of mentions of rare diseases, which is then 
validated and refined by experts to build a consolidated dataset concerning a subset of different rare 
diseases. Based on this dataset, we carry out a series of experiments for rare disease classification 
using both a semi-supervised technique and state-of-the-art supervised systems based on both 
discriminative and generative models. A detailed case analysis provides insights on which systems 
excel in specific scenarios and why. The validated dataset contains a total of 1900 annotated texts 
containing mentions to rare diseases. Experiments on this dataset show that the best supervised 
models improve the performance of the semi-supervised system by more than 10% (78.74% vs 67.37% 
micro-average F-Measure), individually enhancing the classification of a significant number of diseases 
in the dataset. State-of-the-art supervised systems are able to offer promising results on the detection 
and classification of rare diseases in clinical texts, even in cases for which the amount of annotated 
information is low. On the other hand, semi-supervised models present interesting capabilities for 
dealing with limited information and data in the field.
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Rare diseases (RDs) are defined by their low prevalence, with varying criteria worldwide: under 200,000 cases in 
the U.S. (60 per 100,000), ≤ 50 per 100,000 in the EU, and < 65 per 100,000 by WHO standards. Despite their 
low prevalence, the broad spectrum of rare diseases results in a high number of affected individuals. According 
to various organizations focused on rare diseases, over 300 million people worldwide live with a rare disease. In 
other words, these conditions affect approximately 3.5% to 5.9% of the global population 1.

Rare diseases profoundly affect individuals and families emotionally, economically, and socially. Their 
chronic nature and uncertain treatment often cause psychological distress and a reduced quality of life. High 
medical costs and limited diagnostic access, compounded by physician knowledge gaps and patient dispersion, 
delay diagnosis. The challenge of diagnosing rare diseases arises from their low prevalence, limiting case studies 
and making pattern recognition difficult2. General physicians play a key role in guiding diagnosis, but with 
6,000–8,000 rare diseases, comprehensive knowledge is unfeasible.

In particular, rare diseases bring unique challenges for young people, disrupting their development, 
education, social integration and opportunities for the future. Many rare diseases cause disabilities, often related 
to congenital malformations: structural or functional abnormalities, such as metabolic disorders or hearing 
defects, identifiable before or after birth. Disabilities often exacerbate the rare diseases problems, so early 
intervention and strong support systems are essential to minimize long-term effects. Orphanet ​(​h​t​t​p​s​:​/​/​w​w​w​
.​o​r​p​h​a​.​n​e​t​/​)​, the international database and portal dedicated to rare diseases and orphan drugs, collects data 
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to improve understanding3, raise awareness and provide tools to affected individuals. Advanced techniques, 
such as deep learning, can help uncover connections between these malformations and rare diseases, leading to 
improved characterization and identification of these conditions.

Another frequent feature in the mentions of rare diseases is the inconsistency of their naming, which creates 
confusion, complicates data retrieval, and hinders registry maintenance. For instance, conditions like Ehlers-
Danlos syndrome may be listed under different terms, such as “cutis laxa” or “joint hypermobility syndrome”, 
making case tracking and research more challenging.

For the above reasons, centralized registries are vital for improving rare diseases diagnosis and research. They 
address challenges like low prevalence, varied naming, and lack of specific medical codes, consolidating data for 
accurate diagnosis, treatment, and better patient outcomes.

The Regional Registry of Rare Diseases (SIERMA) aims to improve rare disease detection in the Community 
of Madrid by integrating data from various healthcare systems4. Managed by the Directorate General of Public 
Health, it collects information mainly from electronic health records (EHRs) in primary care, but also hospital 
discharge data, mortality records, and more. EHRs in Primary Care use the ICPC-2 (International Classification 
of Primary Care) coding system, which facilitates coding for common conditions but lacks specific codes for 
many rare diseases.

In this context, Natural Language Processing (NLP) methods offer significant potential to enhance the 
identification of diagnoses such as rare diseases through the analysis of textual information from unstructured 
clinical texts. Given the scarcity of annotated data and the linguistic variability inherent in clinical narratives, 
supervised approaches often face limitations due to the high cost and complexity of data labeling. Hence, 
semi-supervised or knowledge-based methods, such as pattern-matching techniques leveraging domain-
specific keyphrases and external knowledge sources, can provide valuable initial screening tools that do not 
rely on extensive labeled datasets. These methods can capture relevant clinical concepts and linguistic patterns 
indicative of rare diseases, enabling the extraction of meaningful information even in low-resource scenarios. By 
combining semi-supervised keyphrase-based approaches with advanced transformer-based models, this work 
aims to leverage the strengths of both strategies, providing robust and scalable solutions that can assist clinicians 
and researchers in improving rare disease diagnosis and documentation.

Background
Efforts have been made to detect mentions of disabilities in texts5, as well as their relationship with rare 
diseases6, applying NLP techniques. By employing NLP, researchers aim to extract and analyze textual data from 
various sources, such as electronic health records and medical literature, to identify references to disabilities 
and their association with rare diseases. These techniques enable the automated processing of vast amounts of 
text, allowing for the identification of patterns and insights that can aid in understanding the impact of rare 
diseases on individuals’ abilities and overall health. Moreover, leveraging NLP facilitates the development of 
computational tools and algorithms for more efficient and accurate detection of these associations, ultimately 
contributing to improved diagnosis, treatment, and management of rare diseases and associated disabilities.

In the absence of training data, some rule-based systems have been proposed7. Dong et al.8 have developed 
a system relying on weak supervision. This system links rare diseases names (Orphanet Rare Disease Ontology 
(ORDO)) to UMLS codes. They create training data of candidate mention-UMLS pairs by applying some custom 
rules. The linked pairs created in this way are then used to train a model. However, the experiments have been 
carried out on a general medical dataset, MIMIC-III9, not specific for rare diseases.

Early rare disease detection systems, when equipped with reference data, initially relied on classical 
classifiers10, followed by advancements in deep learning systems6,11. More recently, with the emergence of Large 
Language Models (LLMs), efforts have begun to explore options for applying them to this problem. LLMs offer 
promising capabilities in processing and understanding large volumes of textual data, potentially enhancing the 
accuracy and efficiency of rare disease detection by leveraging their advanced NLP capabilities.

Wang et al.12 have developed a method for rare disease concept normalization by fine-tuning Llama 2, an 
open-source LLM using a domain-specific corpus sourced from the Human Phenotype Ontology (HPO). They 
used a template-based script to generate two corpora for tuning. The first (NAME) contains normalized HPO 
names, extracted from HPO vocabularies, along with their corresponding identifiers. The second (NAME+SYN) 
includes HPO names and half of the synonyms of the concept, as well as their identifiers. The fine-tuned 
models show ability to standardize phenotype terms not encountered in the fine-tuning corpus, encompassing 
misspellings, synonyms, and terms sourced from alternate ontologies.

Oniani et al.13 propose a majority voting system that combines several LLM systems on one-shot rare disease 
identification and classification tasks. Few-Shot Learning (FSL) is a subfield of artificial intelligence aimed at 
enabling machine learning even in scenarios with a limited number of samples (also referred to as “shots”). 
Identifying rare diseases stands out as a natural application for leveraging FSL techniques. The system works by 
prompting (giving instructions or questions to an AI model to get an answer or result) several LLMs to perform 
the same task and then conducting a majority vote on the resulting outputs. The ensemble method improved the 
results of all the individual models. The proposal was evaluated on a novel Few-Shot Learning (FSL) dataset for 
rare disease identification, obtained by processing a recently published MIMIC-IV database14.

Although the amount of data available in the field of rare diseases is very scarce, some exceptions can be 
found. One of them is the RDD (Rare Disease-Disabilities) corpus6. It is composed of scientific abstracts of 
articles in English related to some rare diseases. The annotation includes disabilities, negation, speculation and 
also relationships between rare diseases and disabilities. In addition to providing annotations of mentions to rare 
diseases, it has annotated disabilities using the Orphanet Functioning Thesaurus as the base of the annotation 
criteria. Another corpus related to the previous one is DIANN15, which does not focus on rare diseases but 
on disabilities. It is also made up of abstracts of scientific articles, but in this case in English and Spanish. The 
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RareDis corpus16 is compiled from texts extracted from the rare disease repository, curated and updated by the 
National Organization for Rare Diseases (NORD). It includes annotations of different entities (disease, rare 
disease, symptom, sign and anaphor) as well as some relationships (produces, is a, is acronym, is synonym, 
increases risk of, anaphora). The Boston Children’s Hospital17 is developing the Children’s Rare Disease Cohorts 
initiative (CRDC), a database of 2441 exomes from 15 pediatric rare disease cohorts, with major contributions 
from early onset epilepsy and early onset inflammatory bowel disease. All sequencing data are integrated and 
combined with phenotypic and research data in a genomics learning system. Phenotypes were both manually 
annotated and pulled automatically from patient medical records. Kariampuzha et al.18 have also compiled a 
corpus of scientific articles, in this case with annotations of epidemiological information (epidemiologic type, 
epidemiologic rate, location, ethnicity/nationality/race, date, sex, disease name and synonym, and disease 
abbreviation). They randomly selected 500 rare diseases and then they selected a maximum of 50 PubMed 
abstracts for each disease.

Existing corpora publicly available are often pieced together from scientific articles or clinical case studies, 
lacking comprehensive medical reports essential for in-depth analysis and model training for this type of 
documents. In this work we focus precisely on primary care medical reports, developing systems specifically 
designed for this context.

Current limitations and proposal
Despite the progress made, several reviews of the literature on the subject19,20 have concluded that current 
technology encounters significant difficulties in its application to the study of rare diseases, and that information 
sharing is essential.

Another problem is that most existing works in this domain still rely significantly on manual effort, with 
minimal automation, making the process of detecting rare diseases time-consuming and prone to human error. 
A major challenge is the diversity in nomenclature, as rare diseases often have multiple names or aliases, leading 
to inconsistencies in recognition. Furthermore, the complexity of medical language adds to the difficulty, as 
systems must handle nuances such as negations (e.g., “no evidence of disease”) and references to diseases affecting 
family members rather than the patient. Most critically, the lack of sufficient data on rare diseases severely 
hampers the development and training of robust, automated extraction tools, making it difficult to achieve 
reliable performance. In the field of rare diseases, the availability of openly accessible corpora remains notably 
sparse, notwithstanding the exceptions mentioned above, a deficiency that interferes with the advancement of 
research in this critical domain.

We aim to address these limitations to enhance the effectiveness of the rare disease registry in a densely 
populated area of Spain, specifically in the Community of Madrid.

For this purpose, a study has been conducted to determine the types of systems most suitable for working 
with the available data, this is, a limited number of cases for each rare disease and records written in Spanish. 
Among the latter, the most recent Transformer-based models including open-source generative models have 
been studied.

Not only have we evaluated both types of models, but we have also evidenced that the combination of both 
types of techniques can lead to high accuracy results with limited manual annotation effort. The thorough 
identification of new rare disease cases that have not been previously detected not only represents a significant 
improvement for the healthcare system, which can then provide support to patients affected by these diseases, 
but also increases the amount of available information about these diseases, which is crucial for research given 
their nature.

In addition, the outcome of the study is a system designed to process new EHRs as they become available, 
with the ability to identify a certain set of rare diseases, which may not have been adequately recorded. For the 
evaluation, we have focused on a set of rare diseases of special interest in the registry of rare diseases in the 
Spanish state registry.

Materials and methods
Rare disease detection
This section is dedicated to describing the pipeline followed for building a dataset composed of texts mentioning 
rare diseases. First, we depict the original source of information from which the textual data is extracted for 
its use throughout this research. Based on this data, a semi-supervised knowledge-based system for extracting 
mentions of rare diseases is developed, being its results subsequently validated by experts in the field. Once 
this validation is generated, the information is used to finally develop a consolidated dataset for further 
experimentation aimed at the detection and classification of rare diseases.

Figure 1 illustrates the pipeline for detecting rare diseases in clinical notes using the proposed semi-supervised 
system, followed by the manual validation done by experts in the field.

Data cohort
The initial data cohort used in this research is a collection of clinical reports written in the Spanish language 
related to pediatric consultations in Primary Care Centers of the Community of Madrid. The study population 
consisted in all children born between 01/01/2010 and 08/25/2021 with access to the National Health Service 
in the Community of Madrid. All the information registered in the electronic clinical records of primary care 
under a ICPC-2 code corresponding to a congenital malformation was obtained for this population. A process of 
anonymization and obfuscation was carried out on these data, to avoid any possibility of identification. Data were 
anonymized and obfuscated by professionals from the Regional Registry of Rare Diseases. For anonymization, 
each individual was assigned an automatically generated numerical identifier, and all personal identification 
data (such as first and family names, medical record numbers, etc.) were removed from the final dataset. Any 
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potentially sensitive information within the clinical notes was also obfuscated in the final dataset. To achieve 
this, a comprehensive dictionary of nearly 550,000 terms and text sequences was used. This dictionary was 
compiled from population databases in our region (including census data) and includes first and family names, 
geographical names (cities, municipalities, districts, neighborhoods), and names of hospitals and health centers. 
To prevent accidental removal of rare disease names or syndromes, the dictionary was cross-checked against the 
Orphanet rare disease catalogue to exclude any overlapping terms. The obfuscation process automatically scans 
the clinical notes for matches against this dictionary, replacing any detected term with a sequence of asterisks of 
equal length to maintain text readability. Additionally, sequences of three-digit numbers (e.g., phone numbers 
or dates) are replaced to protect other sensitive information. The entire process is supervised and evaluated by 
public health professionals, who also manually enrich the dictionary to ensure its accuracy and effectiveness. In 
this sense, it is important to remark that the research project has been approved by the regional Research Ethics 
Committee for Medicines (“Comité de ética de la Investigación con medicamentos” or CEIm) of the Community 
of Madrid21. This approval confirms that the study and all methods involved in it comply with the relevant 
guidelines as well as with national and European data protection laws and ethical regulations. In this context, 
and as confirmed by the ethics committee, informed consent from individual participants is not required due to 
the full anonymization of the data and the observational nature of the study.

Each analyzed record contains an anonymized identifier for the patient, as well as an identifier for each 
specific episode representing a set of visits to the pediatrician for monitoring a medical issue. Each episode 
may be divided into different notes indicating each visit to the pediatrician, and the date of each note is also 
recorded. Each of these notes, therefore, contains the text written by the health professional during the visit. 
It is this textual information that will be used for the process of searching for mentions of rare diseases. It is 
important to highlight that the selected pediatric consultations are associated with the study of malformations 
and congenital anomalies in patients. That is, all medical histories within the analyzed corpus refer to follow-
ups related to a congenital anomaly or malformation. These malformations are coded using the aforementioned 
ICPC-2 codes. The specific ICPC-2 codes that can be found in the data cohort, together with their Spanish and 
English descriptions, are shown in Appendix A (Table A1).

The initial dataset we are working with consists of a total of 249,950 clinical notes, belonging to 86,343 
patients during the follow-up of 96,158 episodes. That is, each patient has an average of 1.11 consultation 
episodes, and each episode consists of an average of 2.60 consultations, each containing a clinical note taken by 
the health professional.

Keyphrase-based semi-supervised rare disease detection
Considering that the original dataset consists of raw texts without any type of annotation whatsoever regarding 
rare diseases, the need to develop a semi-supervised system to perform an initial detection of mentions of these 
entities is clear. This system must therefore be capable of locating possible text fragments that allude to the 
presence of a rare disease in the patient’s medical history. This section describes the developed system, which 
makes use of a dictionary of rare diseases and their naming variants, combined with a series of linguistic rules 
that allow us to detect rare diseases in the original text. As shown in the following sections, the proposed 
system is based on a pattern-matching pipeline in which keyphrase extraction is complemented by a series 
of processing steps specifically designed for the task at hand. These steps include pre-processing, filtering of 
candidate keyphrases using TF-IDF, and post-processing rules based on the detection of negation and references 
to individuals other than the patient (specifically, family members).

Rare disease dictionary The dictionary of rare diseases that are searched for within the texts has been 
generated from the public information provided by Orphanet. Specifically, a database of rare diseases identified 
by unique codes, denoted ORPHA codes, is provided. Mentions of rare diseases can appear in biomedical texts 
in various ways, so Orphanet makes a great effort to include all variants and synonyms related to a rare disease 
in this database. Through the automatic processing of the database, we are able to generate a dictionary that 
contains a total of 9,317 different diseases, with an average of 2.24 different variants per rare disease. Therefore, 
the dictionary is populated with a total of 20,894 potential expressions to be found within the clinical reports. 
Some examples of the elements populating the dictionary can be seen in Table 1:

Fig. 1.  Rare disease detection pipeline.
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As it can be observed in the table, there are different types of variants regarding a particular rare disease, 
such as acronyms (“OI” for “Osteogénesis imperfecta”), linguistic variations (“Displasia ósea fibrosa” instead of 
“Displasia fibrosa de hueso”), completely different ways of naming a disease (“Retinosis pigmentaria-sordera” for 
“Síndrome de Usher”) or even acronyms derived from the English name of the disease (“PKU” for “Fenilcetonuria”, 
coming from “Phenylketonuria”). This enormous variability regarding the ways of naming rare diseases in the 
literature is one of the most crucial aspects for developing a system able to accurately detect rare diseases within 
medical texts.

Keyphrase extraction In addition to generating the dictionary of rare diseases and their possible variants, a 
specific processing of the texts in with mentions of these diseases will be searched is needed. The most important 
operation performed on these texts is the extraction of keyphrases that can represent the most important 
information mentioned in the text. This greatly reduces the complexity of conducting an exhaustive search for 
all possible rare diseases across all texts.

A basic pre-processing is performed on the original texts to prepare them for keyphrase extraction. This pre-
processing consists of basic tokenization including sentence and word splitting using the NLTK Python library22, 
removal of punctuation elements, lowercasing, and removal of accents. Additionally, the lemmatization of the 
words in the text allows us to reduce lexical variability for better subsequent detection. At the same time, POS-
tagging of the text is performed using the TreeTagger tool23 in order to obtain the grammatical categories of the 
words, which will be used in the keyphrase extraction.

Once the texts have been prepared, a regular expression regarding POS tags of the words in the text is 
proposed for extracting the keyphrases of interest:

(NEG? JJ* (NN .*)+ JJ* IN)? JJ* (NN.*)+ JJ*
In this expression, “NEG” indicates negation triggers in Spanish such as “no” or “sin”, “JJ” represents 

adjectives, “NN” is the tag for nouns and “IN” marks the apparition of a preposition. This regular expression 
mainly describes the occurrence of a single noun or a noun phrase (last three POS tags), that can or cannot 
be accompanied by a prepositional phrase. A rare disease is normally expressed through a noun or a noun 
phrase (for instance, “Fenilcetonuria leve” or “Osteogénesis imperfecta”). However, there are cases in which rare 
disease are named using more complex sentences containing single and compound prepositional phrases (i.e., 
“Síndrome de Usher”, “Enfermedad de Lobstein” or “Inmunodeficiencia por deficiencia de factor H”). The complete 
regular expression might be useful for detecting those particular cases. This strategy has shown to be useful on 
extracting relevant keyphrases from biomedical texts in previous works24.

Through this expression, only the keyphrases of interest are selected, eliminating the rest of the textual 
content. Once this process is completed, a TF-IDF model is constructed in which each document is the text of an 
entry from the original dataset, containing a note about the patient’s medical history, and the elements or tokens 
of the documents are the extracted keyphrases. The TF-IDF model allows us to further reduce the system’s 
complexity by focusing on the most relevant keyphrases for each document. Specifically, we select a maximum of 
50 keyphrases for each note in the corpus. The combination of using regular expressions for keyphrase extraction 
along with the TF-IDF model to select the most relevant keyphrases enables filtering out potential expressions 
that could introduce noise or ambiguity in the detection of rare diseases. Therefore, this provides an advantage 
over other dictionary-based systems aimed to detecting expressions through rule-based pattern matching, such 
as the SpaCy tool (https://spacy.io/).

The same pre-processing steps (tokenization, punctuation and accent removal, lowercasing and 
lemmatization) is performed on the names of the rare diseases and their variants in the dictionary. In addition, 
both the keyphrases extracted from the text and the names and variants of the rare diseases are transformed 
into bags of words, where the order of the words is not representative. This way, the system is able to deal with 
the high variability regarding word order in the Spanish language, in which expressions such as “Condromalacia 
rotuliana familiar” and “Condromalacia familiar rotuliana” would be equivalent.

The final step is the exhaustive search for matching expressions of rare diseases and their variants throughout 
all the extracted keyphrases in the considered texts. For this purpose, the set of keyphrases belonging to a 
particular document (clinical note), converted into bags of words to disregard the word order, is compared with 
the complete set of rare diseases, also converted into bags of words. The matches found are stored as rare diseases 
mentioned in a clinical note.

A post-processing step is also applied using some rules to reduce ambiguity and noise. In particular, detected 
diseases composed of only one word are disregarded if the word has three or fewer letters. In such cases, there 
is a high probability of having detected an acronym, and empirical evidence shows that the error rate increases 

ORPHA code Rare disease Variants

249 Displasia fibrosa de hueso Fibrous dysplasia of bone Displasia ósea fibrosa (Fibrous bone dysplasia)

666 Osteogénesis imperfecta Osteogenesis imperfecta Enfermedad de Lobstein (Lobstein disease) Enfermedad de Porak y Durante (Porak and Durante disease) 
Enfermedad de los huesos de cristal (Brittle bone disease) OI (OI) Osteopsatirosis (Osteopsathyrosis)

886 Síndrome de Usher Usher’s Syndrome Retinosis pigmentaria-sordera (Retinitis pigmentosa-deafness) USH (USH)

79253 Fenilcetonuria leve Mild phenylketonuria PKU leve (Mild PKU) Variante de la PKU (PKU variant) Variante de la fenilcetonuria (Phenylketonuria 
variant) mPKU (mPKU)

Table 1.  Examples of rare diseases and their variants extracted from the Orphanet database. Italic font is used 
after each Spanish expression for indicating the English translation (in parentheses).
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significantly. Similarly, if the detected disease consists of a single word and that word is “syndrome”, the detection 
is also discarded due to its considerable ambiguity.

Post-processing: negation and family There are two fundamental cases in the proposed pipeline that are 
crucial to consider in order to avoid errors while detecting mentions of rare diseases. On one hand, it is important 
to consider negation, that is, mentions of rare diseases that, even though they appear in the text, do not indicate 
that the patient suffers from them. These are usually cases where, after the suspicion of a certain disease, it has 
been ruled out after conducting tests.

On the other hand, a similar consideration must be made regarding mentions of rare diseases related to the 
patient’s family, that is, cases where a family member of the patient has a certain rare disease mentioned in the 
text, but this disease does not refer to the patient attending the health professional.

In order to address negation cases, a subsystem based on the NegEx algorithm25, adapted to the Spanish 
language, has been employed. After a collection of triggers regarding negation is defined, the algorithm performs 
a rule-based analysis of a given text and a particular entity (in our case, the rare disease), to determine whether 
the entity appears negated in the text. The same idea is applied for detecting mentions related to family members, 
however, in this case, the collection of triggers involves words and expressions that refer to members of the 
family. In particular, four different types of triggers can be defined in our case within the NegEx algorithm: 
pre-negations ([PREN] tag) for triggers commonly appearing previous to the negated entity (for instance, “sin 
evidencia”, “without evidence”), post-negations ([POST] tag) for triggers commonly appearing after the negated 
entity (for instance, “debe ser descartado”, “must be discarded”), pseudo-negations ([PSEU] tag) for expressions 
that introduce some kind of doubt regarding the occurrence or not of the entity (for instance, “podría ser 
descartado”, “could be discarded”), and conjunctions ([CONJ] tag) for expressions that might allow to determine 
the degree of uncertainty for negating a particular entity (for instance, “secundario a”, “secondary to”). On the 
other hand, family triggers only make use of previously appearing triggers and conjunctions. Once these triggers 
have been determined, the NegEx algorithm receives the entity of interest (in our case, a particular rare disease), 
and the text (clinical note) within possible negations or family mentions should be searched related to that entity. 
The algorithm then returns whether the entity is considered to be negated, or related to a family member, within 
the text.

Tables 2 and 3 show examples of negated mentions of rare diseases, and rare diseases related to family 
members, respectively.

Once that these mentions have been detected within a text, these texts are annotated with one out of three 
different labels regarding negation: “affirmed”, “negated” and “possible”. This last possible annotation is employed 
in cases for which the same rare disease appears both affirmed and negated in the analyzed text. Regarding 
family, and following the same considerations, three different labels can be assigned to a text: “individual” for 
rare diseases related to the patient, “family” for rare diseases referring to family members, and “individual and 
family”. The last case is employed when a rare disease appears both related to the patient and to a family member 
in the same text.

It is important to remark that the post-processing steps that involve detection of negated rare diseases and 
mentions to family members are conducted prior to the manual annotation and validation of the dataset by the 
experts, which will be detailed in “Dataset creation”. This is, information regarding negation and family history 
is added to the automatically annotated dataset aiming to guide human annotators in the process of confirming 
or rejecting the mention of a rare disease within a clinical note. The final decision to validate the appearance of a 
rare disease within the text always rests with the human annotators of the consolidated dataset.

Dataset creation
The output of the whole process described in “Keyphrase-based semi-supervised rare disease detection” is a 
subset of annotated clinical notes, each of them related to a particular consultation within an episode in the 

Rare disease Family mention Family mention (EN)

Enfermedad de Charcot Padre nacido en ****, con enfermedad de Charcot Father born in ****, withCharcot’s Disease

Malformación aórtica Acude la madre refiriendo que han intervenido al padre de una 
malformacion aortica

The mother reports that thefather has 
undergone surgery for anaortic malformation

Miocardiopatía hipertrófica Abuelo diagnosticado de miocardiopatia hipertrofica Grandfather diagnosed withhypertrophic 
cardiomyopathy

Table 3.  Examples of mentions of rare diseases affecting family members.

 

Rare disease Negated mention Negated mention (EN)

Leucomalacia periventricular No se observan signos de hemorragia antigua de la matriz germinal ni leucomalacia 
periventricular

No signs of  old hemorrhage in the germinal matrix 
or periventricular leukomalacia are observed

Craneosinostosis RX de cráneo realizada por neurocirugía que según refiere no hay signos de craneosinostosis Skull X-ray performed by neurosurgery, which 
reportedly showsno signs of craniosynostosis

Enfermedad neuromuscular Cuádriceps no presenta degeneración grasa por lo que no debe corresponder a una 
enfermedad neuromuscular

Quadriceps not showing fatty degeneration, soit 
should not correspond to a neuromuscular disease

Table 2.  Examples of negated mentions of rare diseases.
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patient’s medical history, for which at least one mention of a rare disease has been found in the text. Moreover, 
the previously mentioned annotations regarding negation and family-related mentions are also included in this 
output.

Considering that this is the output of an automatic system, and we are working in the medical domain with 
sensitive data, there is an important need of contrasting this information with experts that can validate it. Hence, 
this is the data collection from which the final rare disease dataset will be built, after careful examination and 
validation by these experts. The main statistics of this initial resource are gathered in Table 4.

As shown in the table, there are a total of 9,885 clinical notes that contain mentions of rare diseases, for a 
total of 6,188 unique patients. The vast majority of mentions are affirmed and refer to the individual, although 
negation and mentions of family members are phenomena that occur frequently, making it important to consider 
them. On the other hand, a total of 294 different rare diseases are detected.

Regarding the potential overlapping between detected entities in the initial collection, it is important to 
remark that in the first automatic annotation, there will be a higher overlap between clinical entities with different 
assigned Orpha codes. This is due to the hierarchical classification of rare diseases considered by Orphanet, in 
which two clinical entities referring to the same disease but with different levels of granularity, may present 
different Orpha codes. Table 5 gathers this information about the co-occurrence of different clinical entities 
(potential rare diseases) in the initial collection, after applying the keyphrase-based detection technique. As it can 
be observed in the table, most of the clinical notes and patients only present one clinical entity, however, there are 
a significant number of cases (both clinical notes and patients) for which the appearance of two different clinical 
entities is quite common. On the other hand, the co-occurrence of three or more clinical entities is not so usual. 
It is important to remark that in this case, 294 different clinical entities with their corresponding Orpha codes 
are initially detected as rare diseases. Hence, and as a result of the granularity issues regarding the hierarchy in 
Orphanet previously mentioned, it is possible that a pair of co-occurring clinical entities are similar or highly 
related although classified differently according to the rare disease dictionary employed for their detection. 
For instance, “hipotiroidismo congénito” (congenital hypothyroidism, Orpha code 442) and “hipotiroidismo 
primario congénito” (primary congenital hypothyroidism, Orpha code 226295) have been annotated as the same 
disease for cases included in the final, consolidated dataset.

From this initial collection, a verification and validation process is carried out by expert personnel from the 
SIERMA group of the Community of Madrid. In particular, four healthcare professionals (medicine, nursing, 
and speech therapy) with several years of experience participated in the review and validation of the original 
annotation. Case validation is performed by a detailed review of the complete electronic clinical records of 
the individual (primary care and hospital consultations, and hospital admissions), confirming or rejecting the 
mentions of a specific subset of rare diseases, detected through the aforementioned keyphrase-based system. 
More particularly, a set of 19 rare diseases is selected, which are reported annually to the National Registry of 
Rare Diseases (“Registro estatal de enfermedades Raras” or ReeR) or are in the process of being incorporated 
into this registry. The restriction of this study to the detailed analysis of 19 diseases is hence due to the existence 
of a standardized workflow for these diseases, which includes a specific disease profile or record for each one, 
defined at the national level26. The experts annotate the texts in which a rare disease has been detected based 
on the information they have about the patient and using nationally agreed-upon criteria, as these cases, once 
confirmed, are submitted to the national registry. In this way, an occurrence of the disease can be annotated as 
“confirmed”, “possible” but still with insufficient documentation to be confirmed, or “carrier of the disease” in 
some genetic diseases (this could be considered a confirmed case without clinical manifestation). On the other 
hand, the disease can also be annotated as “ruled out”, “ruled out in the person but present in the family history”, 
and “no information”. For the purposes of this work, the first three options are considered positive cases of the 
disease, while the last three annotations are considered negative cases.

Different clinical entities Notes Patients

1 8,540 5,402

2 594 647

3 47 109

> 3 4 30

Total 9,886 6,188

Table 5.  Clinical entity overlapping in the initial collection. Column “Notes” refers to clinical notes, while 
column “Patients” refers to unique patients in the cohort.

 

No. notes No. patients No. RDs

Negation Family

Affirmed Negated Possible Individual Family I & F

9,885 6,188 294 8,947 802 136 9,502 298 85

Table 4.  Statistics of the initial collection after applying the semi-supervised detection of rare diseases. “RDs” 
stands for “Rare diseases”, while “I & F” stands for “Individual and Family”.
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With this information, we are able to construct a consolidated and definitive dataset on which subsequent 
experiments can be conducted for the detection and classification of rare diseases. To do this, all detected cases 
of the 19 considered diseases are taken and all the textual information of each patient is grouped into a single 
document. Considering that there are very few cases where the same patient presents more than one rare disease, 
only one disease per patient will be considered. Finally, in order to have both positive cases (suffering from one 
of the considered rare diseases) and negative cases (that do not present any of the considered diseases), a “None” 
label will be created. Both the cases for which our system detected a rare disease but the experts ruled it out, and 
cases where the disease indicated by the experts is different from the one detected and also lies outside the ReeR 
registry are labeled as “None”.

The total number of cases in the consolidated dataset is 1,900. Table 6 shows the names in Spanish and 
English of the 20 possible labels in the dataset (19 rare diseases and label “None”), together with the total number 
of cases for each label. The label distribution is also shown in Figure 2 for better understanding.

Both the table and the figure clearly show the significant class imbalance present in the dataset. This is a 
crucial aspect regarding further experiments and evaluation of the obtained results, since those classes presenting 
a very low number of instances in the dataset are less likely to be correctly classified by a supervised algorithm. 
However, this issue will be taken into account when comparing different systems.

Figure 3 shows the length distribution (in number of tokens) for the clinical notes that compose the 
consolidated dataset.

As it can be seen in the figure, most of the documents in the dataset contain less than 1,000 tokens. On the 
other hand, there are 23 clinical notes with more than 5,000 tokens, which have been grouped within the last bin 
in the chart, in order to make the graph easier to interpret.

Regarding the ICPC-2 codes corresponding to congenital malformations related to patients in the final 
dataset, the most common codes associated to patients suffering from each of the selected rare diseases, together 
with the percentage of occurrence over the total number of patients for each disease, can be found in Appendix 
B (Table B1).

Rare disease classification
Once the detection of the proposed subset of rare diseases has been performed and validated, a classification 
task can be designed in a way that a system receiving a text corresponding to the patient’s medical history 
must determine whether the patient suffers from any of the rare diseases considered for the task, or there is no 
evidence in the text of the patient being affected by any of them.

In this section, the various systems employed to address the problem of rare disease classification are proposed 
and described. The dataset generated in “Dataset creation”’ will be used for the task, and both a semi-supervised 
system and several supervised systems based on language models will be tested, with the aim of comparing their 
performance.

Spanish name English name Number of cases

Ninguna None 593

Artrogriposis distal Distal arthrogryposis 11

Craneosinostosis Craniosynostosis 265

Displasia renal Renal dysplasia 233

Enfermedad de Gaucher Gaucher disease 2

Epidermólisis bullosa distrófica Dystrophic epidermolysis bullosa 2

Esclerodermia Scleroderma 1

Esclerosis tuberosa Tuberous sclerosis 30

Fenilcetonuria Phenylketonuria 55

Fibrosis quística Cystic fibrosis 23

Hipotiroidismo congénito Congenital hypothyroidism 305

Osteogénesis imperfecta Osteogenesis imperfecta 29

Retinosis pigmentaria Retinitis pigmentosa 3

Síndrome de Angelman Angelman syndrome 17

Síndrome de Beckwith-Wiedemann Beckwith-Wiedemann syndrome 28

Síndrome de Marfan Marfan syndrome 32

Síndrome de Prader-Willi Prader-Willi syndrome 37

Síndrome de Turner Turner syndrome 22

Síndrome de Williams Williams syndrome 33

Tetralogía de Fallot Tetralogy of fallot 179

Total 1,900

Table 6.  Statistics of the final dataset.
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Fig. 3.  Histogram with the length distribution of the clinical notes in the consolidated dataset. All documents 
with more than 5,000 tokens are represented within the same bin (right side of the chart).

 

Fig. 2.  Number of cases by rare disease, ordered by descending cases.
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Semi-supervised system
The system based on the use of keyphrases described in “Keyphrase-based semi-supervised rare disease 
detection” is employed for performing rare disease classification on the final dataset. It is important to consider 
that, although this system was used for generating the initial detection of rare diseases on the initial corpus, it is 
also prone to make mistakes (both false positives and false negative). In this case, as it is mentioned in “Dataset 
creation”, most of the instances annotated as “None” in the dataset come from cases for which the keyphrase-
based system detected a particular disease within the subset considered by the experts, but then those experts 
ruled out this disease in that particular patient. Those cases will become false positives for the keyphrase-based 
system regarding the consolidated dataset. On the other hand, there are also several cases for which the experts 
annotated some instances as mentioning a particular rare disease, while this disease had not been detected by the 
keyphrase-based system. Those will become false negatives for the keyphrase-based system in the rare disease 
classification task.

Given the semi-supervised nature of the keyphrase-based system, this system can be evaluated on the entire 
dataset of 1900 instances without the need to separate it into training and test subsets.

Pre-trained systems
With the aim of fully exploiting the generated rare disease classification dataset and exploring all the possibilities 
offered by the current state of the art for performing classification on biomedical texts, a series of additional 
techniques are proposed to address the problem. Specifically, we focus on discriminative language models 
and prompt-based generative large language models (LLMs) to explore their performance in this task. To this 
end, two pre-trained language models in Spanish with biomedical texts will be selected, both of them based 
on the Transformer architecture27: on one hand, a RoBERTa model28, pre-trained with Spanish clinical and 
biomedical information from various sources29 is explored. The main limitation of this model is the maximum 
document size it can process, which is 512 tokens. To address this issue, a Longformer model30, also pre-trained 
in Spanish31 with the same type of texts as the RoBERTa model, is also studied. This model allows for documents 
up to 4,096 tokens long, this way being able to better process the documents in the proposed dataset. Fine-tuning 
will be performed on both models to adapt them to the problem at hand. Additional information regarding 
hyperparameters, hardware specifications and training/inference times can be found in Appendix C.

In addition to exploring these supervised discriminative models, we are also interested in exploring the 
latest instruction-based generative models. In this regard, we have selected Llama 332, one of the latest open-
source models published. Both Llama 3 and its previous versions have shown very good performance in a 
variety of biomedical tasks33,34. Specifically, we will use the “Llama 3 8B” model, with 8 billion parameters. It 
is important to remark that Llama 3 is a large language model trained in texts written mainly in the English 
language. Although Spanish is likely to be among the languages the model has handled during its extensive 
training process, it is not its primary language, so the system’s performance will probably not reach the results 
achievable with models specifically trained in Spanish. Two different configurations of this model will be tested: 
the first will be a ’zero-shot’ methodology, in which the text to be classified is provided to the model along with a 
prompt indicating the possible values that can be selected for classification (the 19 rare diseases considered, plus 
the ’None’ label if no rare disease is detected in the text). In this case, no training or fine-tuning of the model is 
performed, hence it can be evaluated on the whole dataset in a similar way to the methodology followed with 
the semi-supervised keyphrase-based system. In the second experiment with Llama, instruction tuning will be 
performed on the model using the Low Rank Adaptation (LoRA) technique35. This technique aims at reducing 
the computational cost of training large models by decomposing the neural network’s weight matrix into two 
lower-dimensional matrices whose training implies less computational effort. As mentioned before, additional 
information about the technical specifications of the models employed can be found in Appendix C. Moreover, 
details of the prompt employed for generating the Llama 3 classification for each clinical note can be found in 
Appendix D (Figure D1). The prompt shown in the Appendix was used both in the zero-shot Llama 3 system 
and in the fine-tuned Llama 3 system. In the former case, the prompt is used to ask the model to generate the 
most likely rare disease label associated with the given clinical note (or the label “None” if no disease is found). 
In the second case, during the training phase, the prompt is accompanied by the correct label, hence following an 
instruction tuning methodology. During the testing phase, however, only the prompt is provided to the model, 
which is then asked to generate the predicted label.

It is important to remark that, although the zero-shot Llama model does not require training on labeled data, 
we have included it alongside the fine-tuned supervised models (RoBERTa, Longformer and fine-tuned LLaMA 
3) to facilitate comparison between different uses of pre-trained models and LLMs under a common evaluation 
framework.

In all cases where a training process is necessary (RoBERTa and Longformer models, and Llama 3 model 
with LoRA-based fine-tuning), the same methodology will be followed: a stratified 5-fold cross-validation 
which maintains the existing class distribution in the train and test splits as much as possible. In this setting, 
each cross-validation fold uses 80% of the data for training and 20% for testing, ensuring that every instance 
in the dataset serves as part of a test set exactly once. After all five folds are evaluated, performance metrics 
are aggregated across the full set of 1,900 instances of the dataset, enabling direct comparison with the results 
obtained from the keyphrase-based and zero-shot Llama 3 systems. Within the 80% of the data dedicated to 
the training process, 10% is reserved as a validation split. In unsupervised learning36, the evaluation of a system 
often involves using the entire dataset without splitting it into training and test sets. This is because unsupervised 
(or semi-supervised in this case) methods do not optimize a model based on labeled outcomes, but rather aim 
to identify inherent structures or patterns in the data. By analyzing all the available data, the system can fully 
explore these structures and provide a more comprehensive evaluation of its performance. Furthermore, when 
no labeled ground truth exists, traditional train-test splits are unnecessary, as the focus shifts to metrics like 
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clustering quality, reconstruction error, or similarity to known patterns. In addition, the small size of the corpus 
is also an important reason for evaluating the keyphrase-based system and the zero-shot Llama 3 system using 
the full dataset. This approach is hence consistent with methodologies reported in the literature, where, for 
unsupervised and semi-supervised tasks, the use of the full corpus allows capturing global relationships and 
maximizing the information available for evaluation. In contrast, for the supervised system, 5-fold stratified 
cross-validation was used to ensure a robust estimate of the generalization capabilities of the models.

In any case, the main objective is not necessarily to directly compare the behavior of a semi-supervised 
method with that of supervised ones, since the conditions under which they are evaluated are not exactly the 
same. Rather, synergy between the two types of systems can be analyzed through this methodology, and thus the 
appropriateness of applying one or the other depending on the data available.

No pre-processing steps are applied when using any of the pre-trained systems (RoBERTa, Longformer 
and Llama 3) for performing rare disease classification. In these cases, the original texts are employed, and 
tokenization is carried out using the respective tokenizers of each model as available in Huggingface [

Technical information including hardware specifications of the equipment employed for performing the 
experiments, as well as training and inference times of each model can be found in Appendix C.

Results
In this section, the main results obtained by the different systems described in the previous section on the rare 
disease classification dataset will be presented. The primary metrics used for result analysis will be Precision, 
Recall, and F-Measure, and both micro and macro metrics will be studied. Macro metrics consider the overall 
performance of the models, giving equal importance to each of the classes (in this case, rare diseases) considered. 
On the other hand, micro metrics allow us to analyze the system’s behavior in more detail for each considered 
case. To this end, metrics associated with each of the rare diseases studied will be shown in order to compare 
the performance of each proposed model, taking into account the amount of available information for each 
disease. As mentioned in the previous section, all systems were evaluated on the same dataset of 1,900 clinical 
notes. The systems that do not require training on the dataset (the keyphrase-based system and the zero-shot 
Llama 3 model) were evaluated directly on the full dataset. For the supervised systems (RoBERTa, Longformer, 
and fine-tuned LLaMA 3), a 5-fold cross-validation procedure was conducted, ensuring that each instance in the 
dataset was used as a test sample exactly once. The aggregated results from the five folds therefore represent an 
evaluation over the full set of 1,900 instances, and are thus comparable to those obtained by the keyphrase-based 
and zero-shot Llama 3 systems.

Table 7 shows results obtained by the keyphrase-based system described in “Keyphrase-based semi-
supervised rare disease detection” for each of the 19 rare diseases within the ReeR registry and the “None” class. 
Precision, Recall and F-Measure are computed for each possible label, and micro-average and macro-average 
metrics are also shown. Then, Table 8 shows the same metrics for the supervised systems based on RoBERTa and 

Rare disease Precision Recall F-measure

Ninguna (none) 0.4883 0.6661 0.5635

Artrogriposis distal 0.8571 0.5455 0.6667

Craneosinostosis 0.6434 0.9736 0.7748

Displasia renal 0.8981 0.6052 0.7231

Enfermedad de Gaucher 1.0000 0.5000 0.6667

Epidermólisis bullosa distrófica 1.0000 1.0000 1.0000

Esclerodermia 0.5000 1.0000 0.6667

Esclerosis tuberosa 0.7879 0.8667 0.8254

Fenilcetonuria 0.9615 0.4545 0.6173

Fibrosis quística 0.4444 0.1739 0.2500

Hipotiroidismo congénito 0.9000 0.6197 0.7340

Osteogénesis imperfecta 0.9474 0.6207 0.7500

Retinosis pigmentaria 0.5000 0.3333 0.4000

Síndrome de Angelman 1.0000 0.4706 0.6400

Síndrome de Beckwith-Wiedemann 0.9000 0.3214 0.4737

Síndrome de Marfan 0.7692 0.3125 0.4444

Síndrome de Prader-Willi 0.9091 0.2703 0.4167

Síndrome de Turner 0.9167 1.0000 0.9565

Síndrome de Williams 0.9444 0.5152 0.6667

Tetralogía de Fallot 0.9928 0.7654 0.8644

Micro-average 0.6737 0.6737 0.6737

Macro-average 0.8180 0.6007 0.6927

Table 7.  Results obtained by the semi-supervised keyphrase-based system. Bold indicate that the model is 
offering the best result for a particular rare disease across all tested models. The whole dataset was employed 
for the evaluation of this system.
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Longformer models, and Table 9 presents the metrics for the systems based on the Llama 3 model (both zero-
shot and LoRA-based fine-tuned).

Regarding overall results, the keyphrase-based system is able to obtain the best scores for macro-average 
metrics. In general, these results are logical considering that the keyphrase-based system, based on the use of 
the dictionary of rare diseases and their variants, can classify diseases regardless of the number of cases available 
in the dataset. When it comes to supervised systems, the number of instances seen during training significantly 
conditions their ability to generalize and thus classify these underrepresented diseases in the test subset. All the 
diseases that are especially difficult to be classified by the RoBERTa and Longformer models (distal arthrogyposis, 
Gaucher Disease, dystrophic epidermolysis bullosa, scleroderma, cystic fibrosis, retinitis pigmentosa and 
Angelman Syndrome) contain less than 25 cases in the dataset, hence this value can be seen as a threshold to be 
exceeded when building datasets for rare disease classification. Models based on Llama 3 somehow lie between 
these two scenarios, as their ability to generalize depends more on the pre-training undergone by the model, 
which is based on a much larger amount of data than the RoBERTa and Longformer models. Additionally, these 
models are directly provided with the possible classes they can select in the classification through the input 
prompt. This is why even with a zero-shot approach, the models based on Llama 3 are able to offer classifications 
for almost all the diseases in the dataset. In particular, there are only four rare diseases for which the Llama 3 
model with zero-shot methodology is not able to offer any correct classification, and only two diseases in the 
case of the fine-tuned Llama 3 model. This indicates that, beyond specific results, generative models represent an 
interesting research path to be explored for this particular task.

Regarding micro-average metrics, it is clear that those models which are closer to the language and the 
particular domain employed in the dataset, such as RoBERTa and Longformer, are able to offer better results 
than both the keyphrase-based system and the more generalistic Llama 3 models. This is probably due to the 
fact that their pre-training and training processes are much more specific, especially for those diseases with 
enough training data, hence their learning and generalization abilities are successfully exploited. In particular, 
there are 9 classes (8 rare diseases and class “None”) for which any of the BERT-based models (RoBERTa and 
Longformer) are able to offer the best F-Measure metrics, compared to 8 diseases for which the keyphrase-based 
system obtains better F-Measure and 3 diseases better classified by the fine-tuned Llama 3 model. This leads to 
an improvement of 11.37% in micro-average F-Measure of the best BERT-based model (Longformer) compared 
to the keyphrase-based system. On the other hand, the fine-tuned Llama 3 model obtains very similar micro-
average values than the keyphrase-based system, overcoming it by only 0,52%.

Figure 4 provides a comparative illustration of the results obtained by the different systems developed in 
this work and places them in context with the characteristics of the dataset. Specifically, for each class (19 rare 
diseases plus the ’None’ class), the micro-average F-Measure values are presented for the keyphrase-based 
system, the two systems based on BERT architectures (RoBERTa and Longformer), and the fine-tuned Llama 

RoBERTa Longformer

Rare disease Precision Recall F-measure Precision Recall F-measure

Ninguna (none) 0.6447 0.7926 0.7110 0.6621 0.8128 0.7298

Artrogriposis distal 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Craneosinostosis 0.8130 0.8038 0.8083 0.8182 0.8151 0.8166

Displasia renal 0.8261 0.8155 0.8207 0.8270 0.8412 0.8340

Enfermedad de Gaucher 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Epidermólisis bullosa distrófica 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Esclerodermia 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Esclerosis tuberosa 0.8500 0.5667 0.6800 0.7778 0.7000 0.7368

Fenilcetonuria 0.8298 0.7091 0.7647 0.8810 0.6727 0.7629

Fibrosis quística 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Hipotiroidismo congénito 0.9122 0.8852 0.8985 0.9236 0.8721 0.8971

Osteogénesis imperfecta 0.9091 0.6897 0.7843 0.9091 0.6897 0.7843

Retinosis pigmentaria 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Síndrome de Angelman 1.0000 0.0588 0.1111 0.0000 0.0000 0.0000

Síndrome de Beckwith-Wiedemann 0.6957 0.5714 0.6275 0.9000 0.6429 0.7500

Síndrome de Marfan 0.9000 0.5625 0.6923 0.8947 0.5313 0.6667

Síndrome de Prader-Willi 0.6400 0.4324 0.5161 0.7500 0.5676 0.6462

Síndrome de Turner 0.9524 0.9091 0.9302 0.9130 0.9545 0.9333

Síndrome de Williams 0.9444 0.5152 0.6667 0.7419 0.6970 0.7188

Tetralogía de Fallot 0.8710 0.9050 0.8877 0.9240 0.8827 0.9029

Micro-average 0.7732 0.7732 0.7732 0.7874 0.7874 0.7874

Macro-average 0.5894 0.4608 0.5173 0.5461 0.4840 0.5132

Table 8.  Results obtained by the RoBERTa-based and Longformer-based systems. Bold indicate that the model 
is offering the best result for a particular rare disease across all tested models. 5-fold Cross-Validation was 
employed for the evaluation of these systems.
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Fig. 4.  F-measure obtained by each of the developed systems (keyphrase-based, RoBERTa, Longformer and 
Llama 3 fine-tuned) for each rare disease in the dataset. Grey dashed line indicates the number of cases by rare 
disease. Diseases ordered (left to right) by descending number of cases.

 

Llama 3 (zero-shot) Llama 3 (fine-tuned)

Rare disease Precision Recall F-measure Precision Recall F-measure

Ninguna (none) 0.3992 0.3339 0.3636 0.4972 0.9106 0.6432

Artrogriposis distal 0.5000 0.1818 0.2667 0.5000 0.1818 0.2667

Craneosinostosis 0.4101 0.5849 0.4821 0.8670 0.6151 0.7196

Displasia renal 0.2198 0.4850 0.3025 0.8968 0.4850 0.6295

Enfermedad de Gaucher 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Epidermólisis bullosa distrófica 0.0000 0.0000 0.0000 0.3333 0.5000 0.4000

Esclerodermia 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000

Esclerosis tuberosa 0.7500 0.4000 0.5217 0.8000 0.4000 0.5333

Fenilcetonuria 0.8636 0.3455 0.4935 1.0000 0.3455 0.5135

Fibrosis quística 0.4000 0.0870 0.1429 0.6667 0.0870 0.1538

Hipotiroidismo congénito 0.8087 0.3049 0.4429 0.9383 0.6984 0.8008

Osteogénesis imperfecta 0.8824 0.5172 0.6522 1.0000 0.6552 0.7917

Retinosis pigmentaria 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Síndrome de Angelman 0.6154 0.4706 0.5333 1.0000 0.2353 0.3810

Síndrome de Beckwith-Wiedemann 0.8333 0.1786 0.2941 1.0000 0.4286 0.6000

Síndrome de Marfan 0.9412 0.5000 0.6531 0.9286 0.4063 0.5652

Síndrome de Prader-Willi 1.0000 0.1622 0.2791 1.0000 0.4865 0.6545

Síndrome de Turner 0.0714 0.5000 0.1250 0.8333 0.2273 0.3571

Síndrome de Williams 0.1194 0.2424 0.1600 0.9500 0.5758 0.7170

Tetralogía de Fallot 0.9857 0.3855 0.5542 0.9926 0.7486 0.8535

Micro-average 0.3853 0.3853 0.3853 0.6789 0.6789 0.6789

Macro-average 0.4900 0.2840 0.3596 0.7602 0.4493 0.5648

Table 9.  Results obtained by the Llama (zero shot and LoRA-based fine-tuned) systems. Bold indicate that the 
model is offering the best result for a particular rare disease across all tested models. 5-fold cross-validation 
was employed for the evaluation of the fine-tuned Llama 3 system, while the zero-shot system was tested in an 
unsupervised manner on all the instances of the consolidated dataset.
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3 system. The values for the zero-shot version of Llama 3 are not included, as it does not outperform the other 
systems for any of the dataset’s possible classes. The total number of instances for each class in the dataset is also 
shown as a grey dotted line, and diseases are ordered from left to right in the chart, according to this number of 
cases (descending order).

The figure clearly shows the dynamics followed by the different systems proposed in this work, with three 
distinct behaviors observable: when the number of instances available for a specific class is sufficiently high 
(more than approximately 40 instances), the systems based on fine-tuning a pre-trained model such as RoBERTa 
or Longformer achieve the best results, with Longformer performing the best on average between the two. This 
corresponds to the first six classes (from “Ninguna” (None) to “Fenilcetonuria”, inclusive). In all these cases, the 
keyphrase-based system and the fine-tuned Llama 3 system fall behind the other two techniques. This indicates 
that the availability of a good amount of training data benefits systems based on BERT architectures, even when 
the number of available instances is not excessively high.

A second differentiated behavior would be illustrated by those cases with around 20 to 40 instances per class, 
represented by the next six classes in the graph (from “Síndrome de Prader-Willi” to “Síndrome de Beckwith-
Wiedemann”, inclusive). In these cases, there is much higher variability in the behavior of the different systems 
tested, with some diseases still showing better results for the BERT-based systems, but also diseases where the 
keyphrase-based system and even the Llama 3-based system outperform the other two.

Finally, as we move to the far right side of the graph, where the number of available instances for each class 
drastically decreases, only the keyphrase-based system and the Llama 3-based system offer acceptable results, 
with some cases where the BERT-based systems fail to classify any instances correctly.

These results, as previously mentioned, reinforce the idea that both the keyphrase-based system and generative 
systems like Llama 3 handle data scarcity much better than BERT-based systems. In the case of the keyphrase-
based system, this is because it does not rely on training data but rather on its pattern-matching-based detection 
rules. For generative systems, they benefit from being pre-trained on vast amounts of data, which, combined 
with the fine-tuning that can be applied, allows them to correctly classify these underrepresented classes in the 
dataset.

The rare diseases that are best classified by each of the tested models, in terms of F-Measure, are as follows:

•	 Keyphrase-based model: distal arthrogryposis, Gaucher Disease, dystrophic epidermolysis bullosa, tuberous 
sclerosis, cystic fibrosis, retinitis pigmentosa, Angelman Syndrome and Turner Syndrome.

•	 RoBERTa model: phenylketonuria, congenital hypothyroidism and Marfan Syndrome.
•	 Longformer model: craniosynostosis, renal dysplasia, Beckwith-Wiedemann Syndrome, Williams Syndrome 

and tetralogy of Fallot.
•	 Llama 3 model (fine-tuned): scleroderma, osteogenesis imperfecta and Prader-Willi Syndrome.

Additionally, the Longformer model offers the best F-Measure in classifying the “None” label. Finally, the zero-
shot Llama 3 model is not able to overcome the other models for any of the considered diseases.

Discussion
In this section, the predictions generated by the various systems tested will be discussed. For this purpose, 
different scenarios encountered in the analysis of specific instances from the evaluation dataset will be presented, 
showing the text of the analyzed instance and studying the reasons that lead to correct detection by some models 
and incorrect detection by others.

Table 10 shows a collection of selected cases for which all the possible classification scenarios are covered.
The table shows excerpts from the patient’s medical history text in column “Evidence”, selected based on the 

appearance of certain textual evidence that could lead to the detection of the disease. “Gold Standard” column 
indicates the correct classification according to the experts, while the remaining columns display the prediction 
made by each of the explored systems. It is important to remark that, for the sake of clarity and readability of 
the tables, we will group the predictions of the RoBERTa and Longformer models. That is, the column ’BERT-
based’ indicates the prediction done by these models, hence only those cases where both models offer the same 
prediction will be taken into account. Additionally, regarding Llama 3, we will only show predictions by the 
LoRA-based fine-tuned version.

•	 Case 1: The case shows a straightforward scenario where all tested models correctly classify the rare disease 
(tuberous sclerosis). It is clearly written in the text in its usual form, followed by the word “comprobada” 
(“confirmed”), allowing both the keyphrase-based system and the models based on BERT and Llama 3 to 
detect it without any problem.

•	 Case 2: The case refers to a scenario where none of the analyzed models are able to correctly classify the dis-
ease. Specifically, in this case, they fail to select the “None” label. The text refers to a previous pregnancy of the 
mother that did not come to term due to the presence of Tetralogy of Fallot in the fetus. All the models detect 
the mention of the disease, but none of them have the ability to interpret that the mention refers to a family 
history antecedent, instead of to the current patient.

•	 Case 3: In this case, only the keyphrase-based system is able to correctly classify the disease (craniosynosto-
sis). The correct classification shown by the Gold Standard is likely due to additional information that is not 
available in the text, since the sentence shown in the Table intuitively suggests that the health professional is 
only suspecting the disease, which is why the supervised methods dismiss it. However, since the mention of 
the disease is explicit, the keyphrase-based method still detects it and ultimately is the only one that gets it 
right.
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•	 Case 4: From this case onward, scenarios where supervised models outperform the unsupervised technique 
are analyzed. In this particular case, the keyphrase-based system fails in detecting the disease because it is 
not mentioned in the text. However, the reference to the medication “Eutirox”, widely used in cases of hy-
pothyroidism, allows all supervised models, which manage prior information (from either pre-training or 
fine-tuning), to correctly detect the disease (congenital hypothyroidism).

•	 Case 5: This case is a clear example of the need to correctly detect linguistic phenomena such as negation 
for performing an accurate classification. In the text, it is evident that the disease is ruled out. However, the 
negation detection module in the keyphrase-based model does not work properly for this instance, causing 
the system to detect the mention of craniosynostosis as positive. Supervised models, which are much more 
sophisticated, incorporate this knowledge about negation into their background knowledge and are capable 
of correctly classifying the label “None”.

•	 Cases 6 to 9: All these cases can be grouped into a scenario that clearly shows why supervised models add 
value to the classification of rare diseases compared to semi-supervised models such as the keyphrase-based 
system employed in this work. They are all cases where mentions of diseases are written in a particular man-
ner, for instance with acronyms (“Sd Marfan”, “S Williams”, “T. Fallot”), or directly with spelling errors (“trat-
alogía” instead of “tetralogía”). In all these cases, the background knowledge handled by supervised language 
models allows them to correctly detect the disease despite these variations. On the other hand, the key-
phrase-based model, lacking these variants in its dictionary, is unable to detect them. The English translation 
is not provided in these cases since the writing variations only make sense in Spanish.

•	 Cases 10 and 11: In these two cases, the keyphrase-based system fails to classify the disease, and among the 
supervised systems, only those based on BERT are able to detect it correctly. Generally, these are more subtle 
cases with additional information has been used for performing the classification in the Gold Standard, oth-
er than the textual content. In case 10, there is only suspicion of the disease mentioned; due to this explicit 
mention, the keyphrase-based model detects it as positive, as does the Llama 3 model. However, the correct 
classification is “None”, a label correctly predicted by the RoBERTa and Longformer-based models. In case 
11, there is no mention of the disease, so the keyphrase-based system does not detect it. However, congenital 
hypothyroidism could be inferred from the tests and medications mentioned, similar to what happened in 
case 5. In this case, only the BERT-based models are capable of making this detection.

Case no. Evidence Gold standard Keyphrase-based BERT-based
Llama 3 (fine-
tuned)

1
“Esclerosis tuberosa comprobada por genética. Cojera. Exp: normal. 
Everolimus 5 mg.” (“Tuberous sclerosis confirmed by genetics. Limping. Exp: 
normal. Everolimus 5 mg.”)

Esclerosis tuberosa Esclerosis tuberosa Esclerosis tuberosa Esclerosis 
tuberosa

2
“[...] está siendo estudiado por AF de embarazo interrumpido a la 15 sem 
por Tetralogia de Fallot [...] ” (“[...] being studied due to a family history of 
interrupted pregnancy at 15 weeks due to Tetralogy of Fallot [...]”)

Ninguna (None) Tetralogía de Fallot Tetralogía de Fallot Tetralogía de 
Fallot

3
“No deformidad craneal congénita y desarrollo psicomotor normal. Aún así 
derivo para despistaje de craneosinostosis.” (“No congenital cranial deformity 
and normal psychomotor development. Nevertheless, I refer for craniosynostosis 
screening.”)

Craneosinostosis Craneosinostosis Ninguna (None) Ninguna 
(None)

4 “En tratamiento con eutirox.” (“On treatment with Euthyrox.”) Hipotiroidismo 
congénito Ninguna (None) Hipotiroidismo 

congénito
Hipotiroidismo 
congénito

5
“Se aprecian todas las suturas craneales abiertas asi como fontanela anterior, 
descartando craneosinostosis.” (“All cranial sutures are open, as well as the 
anterior fontanelle, ruling out craniosynostosis.”)

Ninguna (None) Craneosinostosis Ninguna (None) Ninguna 
(None)

6 “[...] resuelvo. Sd Marfan y conviviente vulnerable. Síndrome de Marfan Ninguna (None) Síndrome de 
Marfan

Síndrome de 
Marfan

7 “23 en cariotipo compatible con S Williams.” Síndrome de 
Williams Ninguna (None) Síndrome de 

Williams
Síndrome de 
Williams

8 “Diagnostico postnatal de T. Fallot” Tetralogía de Fallot Ninguna (None) Tetralogía de Fallot Tetralogía de 
Fallot

9 “Tratalogia de fallot pendiente de cirugia”) Tetralogía de Fallot Ninguna (None) Tetralogía de Fallot Tetralogía de 
Fallot

10
“Sospechan esclerosis tuberosa no confirmada por derma ni RM; han 
aumentado dosis de depakine.” (“They suspect tuberous sclerosis, not 
confirmed by dermatology or MRI; they have increased the dose of Depakine.”)

Ninguna (None) Esclerosis tuberosa Ninguna (None) Esclerosis 
tuberosa

11
“Gammagrafía tiroidea: tiroides ectópico sublingual. Levotroid 50: 1/2 / 
día. Hago receta de Eutirox 88.” (“Thyroid scan: sublingual ectopic thyroid. 
Levotroid 50: 1/2 per day. I’ll prescribe Eutirox 88.”)

Hipotiroidismo 
congénito Ninguna (None) Hipotiroidismo 

congénito
Ninguna 
(None)

12

“Pruebas metabólicas alteradas con sospecha de hipotiroidismo congénito. 
Se realiza nueva prueba del talón en el centro de salud. Pruebas metabólicas 
normales.” (“Altered metabolic tests with suspected congenital hypothyroidism. 
A new heel prick test is performed at the health center. Metabolic tests are 
normal.”)

Ninguna (None) Hipotiroidismo congénito Hipotiroidismo 
congénito

Ninguna 
(None)

13
“prematuridad, 31 semanas eg dg. al alta sd prader. willi dap, precisa sonda 
nasogástrica, enf. membrana hialina leve. Se contacta con enfermera de 
enlace.”

Síndrome de 
Prader-Willi Ninguna (None) Ninguna (None) Síndrome de 

Prader-Willi

Table 10.  Case analysis. Bold text within column “evidence” indicates the likely textual evidence in each text 
fragment, in cases where this evidence appears.
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•	 Cases 12 and 13: Similarly to cases 10 and 11, these are more subtle examples in which only the Llama 3 model 
is able to correctly classify the rare disease, while the keyphrase-based and BERT-based models fail. In case 
12, first information about the patient indicate the possibility of congenital hypothiroidism, while subsequent 
medical tests rule it out. Only Llama 3 is able to interpret the complete chain of facts that leads to classifying 
the instance as “None”. Case 13 is also an example of linguistic variation, similar to cases 6 to 9. However, in 
this case only Llama 3 is able to infer the correct disease (Prader-Willi Syndrome) from the available text.

To complement this case analysis, Table 11 shows the different possible scenarios regarding the combination of 
outputs from the evaluated systems, along with the number of cases in which each possible combination occurs.

As indicated in the caption and similarly to the case analysis, only those cases in which the two BERT-based 
systems (RoBERTa and Longformer) offer the same prediction for an instance are considered. In addition, there 
are two scenarios (last two rows of the table) that have not been explicitly illustrated in the case analysis.

These results directly align with the quantitative results shown in Tables 7, 8 and 9, together with the behavior 
illustrated in Figure 4: in most cases all systems are able to correctly classify the instance (first row), while the 
number of scenarios for which all systems misclassify the instance is not high (second row). This indicates 
that, in general, the proposed systems offer good overall results. Then, the third and fourth rows (cases for 
which the keyphrase-based system performs better and cases for which any supervised model performs better, 
respectively), illustrate how using more complex models leads to better results in general. Although the fifth and 
sixth rows may seem to offer a similar number of cases, the differences between BERT-based models and the 
fine-tuned Llama 3 model must be analysed disregarding the behavior of the keyphrase-based model, this is, 
considering the fifth and eight rows together, and the sixth and seventh rows together. This way, the table shows 
how using any of the BERT-based models is a better choice in many more cases than employing the fine-tuned 
Llama 3 model for addressing the task.

Conclusions
In this article, a complete pipeline oriented towards the detection and classification of rare diseases in pediatric 
clinical notes written in Spanish has been presented. Starting with a cohort of patients, a semi-supervised 
keyphrase-based system was applied to perform an initial detection of a specific set of rare diseases. Some 
linguistic aspects such as negation detection and mentions of rare diseases related to family members instead of 
the patient were taken into account in order to reduce the number of false positives. This initial detection was 
refined and validated by experts in the field, resulting in a consolidated dataset of rare diseases on which further 
classification experiments were conducted. Various models, both semi-supervised and supervised, have been 
proposed for the classification of rare diseases.

The obtained results reinforce the idea that there is a critical need for obtaining substantial amounts of high-
quality data, so that the possibilities offered by supervised techniques, especially those based on large language 
models and generative artificial intelligence, can be fully exploited. Even with the characteristics of the developed 
dataset, which has a modest size and includes certain diseases with very few cases, these models are capable of 
delivering promising results in the classification of rare diseases, overcoming the proposed keyphrase-based 
model in terms of micro-average metrics, and obtaining promising scores for macro-average metrics. However, 
it is also important not to lose sight of the capabilities offered by unsupervised and semi-supervised models in 
dealing with these issues of limited information and data.

An additional analysis has been performed on individual cases for which the explored systems perform 
differently. In this analysis, the strengths provided by supervised systems (both those based on RoBERTa and 
Longformer, and those using generative models like Llama 3) become very evident, while the limitations of the 
keyphrase-based system are clearly shown. Therefore, the exploration of systems with deeper domain knowledge 
becomes highly necessary in such tasks, enabling them to make inferences that are difficult to achieve with other 
techniques.

Example case Keyphrase-based BERT-based Llama 3 No. cases

1 ✓ ✓ ✓ 832

2 ✗ ✗ ✗ 168

3 ✓ ✗ ✗ 41

4-9 ✗ ✓ ✓ 258

10-11 ✗ ✓ ✗ 58

12-13 ✗ ✗ ✓ 52

Not shown ✓ ✗ ✓ 29

Not shown ✓ ✓ ✗ 239

Table 11.  Number of cases for each of the possible combinations of outputs from each evaluated system. Only 
instances with the same output from RoBERTa and Longformer are considered. First column relates the output 
combination to the cases previously explained. Columns 2, 3 and 4 indicate whether the system predicts the 
correct (✓) or an incorrect (✗) label. Last column indicates the number of cases for each output combination. 
Last two rows correspond to combinations not explicitly described in the case analysis.
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Limitations
The following limitations have been identified throughout the development of the work presented in this paper, 
in relation to various aspects of the conducted research:

•	 Data availability and dataset size: as discussed throughout this paper, the limited availability of data is one 
of the fundamental challenges in detecting and classifying rare diseases. Obtaining clinical notes, medical 
reports, and texts from the biomedical domain, even when they are not annotated, is not straightforward, 
especially when working with languages other than English. This information gathering requires highly de-
tailed collaboration agreements with medical institutions such as hospitals, regional and national registries 
or health departments, among others. Furthermore, annotating this type of corpus is also very costly, as it 
requires the involvement of domain experts with deep knowledge of the subject matter and cannot rely on 
more agile annotation methods used for other types of datasets, such as crowdsourcing and collaborative 
annotation. For this reasons, the consolidated dataset, in its current version, is still very limited, and thus the 
generalization and extrapolation of the obtained results must be approached with caution.

•	 Dataset publishability: another major challenge with this type of dataset, related to the issues mentioned 
above, is the difficulty of making it publicly accessible to the research community, thereby allowing other re-
searchers to contribute to scientific progress on the topic. Patient medical information is extremely sensitive, 
and in this case, it involves pediatric patients, i.e., minors. The processes of anonymization, review by ethical 
committees, and other necessary actions to ensure the possibility of publishing such a dataset are slow and 
costly.

•	 Model explainability: one of the most significant challenges associated with the use of deep learning models 
is their explainability. In the biomedical domain, the ability to provide detailed explanations of the decisions 
and predictions made by an automated system is crucial for its potential implementation and use. However, in 
many cases, these systems act as black boxes, making their outputs difficult to interpret. Although generative 
models have made progress in this area by enabling natural language explanations for their decisions, it is 
important to continue researching this field to develop predictive models that can be effectively employed in 
medical practice.

Future work
All the previous conclusions extracted from the research, together with the limitations envisioned during its 
development, help us to depict the following future lines of research:

•	 Collection of new information: one of the main issues observed throughout this work, particularly concern-
ing the use of supervised systems, is the lack of data associated with certain diseases, which results in a poorer 
performance of some of the supervised models explored. For this reason, efforts should be made to collect a 
larger amount of instances, especially for those diseases for which the current number of cases in the dataset 
is very low. As discussed in Section 4, some systems, especially those based on generative models, are able to 
start offering interesting results with not so many training instances. Therefore, even a small increase in the 
total number of cases related to a disease can lead to a significant improvement in the results obtained by these 
models for classifying that disease. However, when it comes to rare diseases, obtaining a significant number of 
cases will always be challenging (and the rarer the disease, the lower the availability of cases), which represents 
an important limitation for these processes.

•	 Generative AI: although the BERT-based models offer the best results in micro-average metrics, the Llama 3 
(fine-tuned) model is the one that most closely approaches the performance of the keyphrase-based system 
in terms of macro-average metrics. Therefore, it is interesting to further investigate this type of generative 
models, experimenting with alternative models and focusing on fine-tuning and hyperparameter explora-
tion. Improvements in macro-average metrics are expected to also result in improvements in micro-average 
metrics. In this regard, the application of few-shot learning techniques on generative models will also be 
explored in order to determine its appropriateness for the task, as well as its advantages regarding zero-shot 
and fine-tuning techniques.

•	 Hybrid models: as it can be clearly observed in the results, both the semi-supervised keyphrase-based model 
and the supervised models are capable of delivering good results for different subsets of diseases. For this 
reason, it would be interesting to explore the possibility of developing hybrid models that take advantage 
of the benefits each of these systems offers separately, in order to combine the best of both worlds. Previous 
works have already shown the potential of hybrid approaches for performing related tasks such as rare disease 
phenotyping37.

•	 Explainability: the application of explainability techniques such as SHAP (SHapley Additive exPlanation)38 or 
LIME (Locally Interpretable Model Agnostic Explanations)39 could be very useful for a better interpretation 
and understanding of the decisions taken by the supervised systems.

Data availability
The data that support the findings of this study are not openly available due to reasons of sensitivity, as they 
contain information that could compromise the privacy of the patients populating the original data cohort. The 
corresponding author may be contacted to discuss reasonable requests for data access, subject to appropriate 
ethical and institutional approvals.
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