Table 1 Autoencoder architecture summary.

From: Machine learning enhanced evaluation of semiconductor quantum dots

Layer

 

Output shape

Parameter

Residual unit

Kernel 3, stride 3, padding 1

\(4 \times 341\)

248

Residual unit

Kernel 3, stride 3, padding 1

\(16 \times 113\)

3344

Residual unit

Kernel 3, stride 3, padding 1

\(32 \times 37\)

13,216

Residual unit

Kernel 3, stride 3, padding 1

\(64 \times 12\)

52,032

Flatten

 

\(1 \times 768\)

Linear feed-forward

 

\(1 \times 16 = \dim \,\Xi \)

12,304

Linear feed-forward

 

\(1 \times 4608\)

78,336

Reshape

 

\(128 \times 36\)

Transposed conv. layer

Kernel 7, stride 3

\(64 \times 112\)

57,664

Transposed conv. layer

Kernel 6, stride 3

\(32 \times 339\)

12,448

Transposed conv. layer

Kernel 6, stride 3

\(16 \times {1020}\)

3152

Transposed conv. layer

Kernel 3, stride 1, padding 1

\(8 \times {1020}\)

424

Transposed conv. layer

Kernel 3, stride 1, padding 1

\(4 \times {1020}\)

116

Transposed conv. layer

Kernel 5, stride 1

\(1 \times {1024} = \dim \,{\mathscr {U}}\)

29