+
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Spatially resolved in situ profiling of mRNA life cycle at transcriptome scale in intact cells and tissues using STARmap PLUS, RIBOmap and TEMPOmap

Abstract

Controlled gene expression programs have a crucial role in shaping cellular functions and activities. At the core of this process lies the RNA life cycle, ensuring protein products are synthesized in the right place at the right time. Here we detail an integrated protocol for imaging-based highly multiplexed in situ profiling of spatial transcriptome using antibody-based protein comapping (STARmap PLUS), spatial translatome mapping (RIBOmap) and spatiotemporal transcriptome mapping (TEMPOmap). These methods selectively convert targeted RNAs, ribosome-bound mRNAs or metabolically labeled RNAs to DNA amplicons with gene-unique barcodes, which are read out through in situ sequencing under a confocal microscope. Compared with other methods, they provide the analytical capacity to track the spatial and temporal dynamics of thousands of RNA species in intact cells and tissues. Our protocol can be readily performed in laboratories experienced in working with RNA and equipped with confocal microscopy instruments. The wet lab experiments in preparing the amplicon library take 2–3 d, followed by variable sequencing times depending on the sample size and target gene number. The spatially resolved single-cell profiles enable downstream analysis, including cell type classification, cell cycle identification and determination of RNA life cycle kinetic parameters through computational analysis guided by the established tutorials. This spatial omics toolkit will help users to better understand spatial and temporal RNA dynamics in heterogeneous cells and tissues.

Key points

  • This protocol for highly multiplexed in situ profiling of spatial transcriptome uses STARmap PLUS, RIBOmap or TEMPOmap to selectively convert targeted RNAs, ribosome-bound mRNAs or metabolically labeled RNAs to DNA amplicons with gene-unique barcodes, which are read out through imaging-based in situ sequencing.

  • These new methodologies provide the analytical capacity to track the spatial and temporal dynamics of thousands of RNA species and their translational status in intact cells and tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of spatial omics technologies that track the RNA life cycle.
Fig. 2: Probe design.
Fig. 3: Schematic diagrams of STARmap PLUS, RIBOmap and TEMPOmap.
Fig. 4: Schematic overview of the SEDAL color-coding and decoding principle.
Fig. 5: Complete overview of experimental and computational procedures of STARmap PLUS, RIBOmap and TEMPOmap.
Fig. 6: Data processing pipeline and representative images showing the anticipated results of STARmap PLUS, RIBOmap and TEMPOmap.

Similar content being viewed by others

Data availability

The datasets mentioned and discussed in this protocol are available in the supporting primary research articles15,16,17. All of the processed sequencing data are available in the Single Cell Portal (STARmap PLUS: https://singlecell.broadinstitute.org/single_cell/study/SCP1375, https://singlecell.broadinstitute.org/single_cell/study/SCP1830; RIBOmap: https://singlecell.broadinstitute.org/single_cell/study/SCP1835; TEMPOmap: https://singlecell.broadinstitute.org/single_cell/study/SCP1792) and Zenodo (STARmap PLUS: https://doi.org/10.5281/zenodo.7332091, https://doi.org/10.5281/zenodo.8327576; RIBOmap: https://doi.org/10.5281/zenodo.8041114; TEMPOmap: https://doi.org/10.5281/zenodo.7803716). The demo dataset for tutorial purposes is available via Single Cell Portal at https://singlecell.broadinstitute.org/single_cell/study/SCP2637 and via Zenodo at https://doi.org/10.5281/zenodo.11176779 (ref. 54). Additional information is available at the Wang Lab website (https://www.wangxiaolab.org). Additional raw images or data are available for research purposes upon request from the corresponding author.

Code availability

All codes and analyses are available via GitHub (STARmap PLUS: https://github.com/wanglab-broad/mAD-analysis, https://github.com/wanglab-broad/mCNS-atlas; RIBOmap: https://github.com/wanglab-broad/RIBOmap-analysis; TEMPOmap: https://github.com/wanglab-broad/TEMPOmap) and Zenodo (STARmap PLUS: https://doi.org/10.5281/zenodo.7332091; RIBOmap: https://doi.org/10.5281/zenodo.8041114; TEMPOmap: https://doi.org/10.5281/zenodo.7803716). Probe design is available via GitHub at https://github.com/wanglab-broad/probe-design. Starfinder analysis tool will be maintained and updated at https://github.com/wanglab-broad/starfinder. ClusterMap segmentation method is available at https://github.com/wanglab-broad/ClusterMap. Additional requests can be made by contacting the corresponding author.

References

  1. Tabula Sapiens Consortium*. et al. The Tabula Sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. Science 376, eabl4896 (2022).

    Article  Google Scholar 

  2. Elmentaite, R., Domínguez Conde, C., Yang, L. & Teichmann, S. A. Single-cell atlases: shared and tissue-specific cell types across human organs. Nat. Rev. Genet. 23, 395–410 (2022).

    Article  PubMed  Google Scholar 

  3. Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090–aaa6090 (2015).

    Article  Google Scholar 

  4. Eng, C.-H. L. et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature 568, 235–239 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Borm, L. E. et al. Scalable in situ single-cell profiling by electrophoretic capture of mRNA using EEL FISH. Nat. Biotechnol. 41, 222–231 (2023).

    PubMed  Google Scholar 

  6. Gyllborg, D. et al. Hybridization-based in situ sequencing (HybISS) for spatially resolved transcriptomics in human and mouse brain tissue. Nucleic Acids Res. 48, e112 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sun, Y.-C. et al. Integrating barcoded neuroanatomy with spatial transcriptional profiling enables identification of gene correlates of projections. Nat. Neurosci. 24, 873–885 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lee, J. H. et al. Highly multiplexed subcellular RNA sequencing in situ. Science 343, 1360–1363 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Alon, S. et al. Expansion sequencing: spatially precise in situ transcriptomics in intact biological systems. Science 371, eaax2656 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang, X. et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361, eaat5691 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Schwanhüusser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011).

    Article  Google Scholar 

  12. Battich, N. et al. Sequencing metabolically labeled transcripts in single cells reveals mRNA turnover strategies. Science 367, 1151 (2020).

    Article  PubMed  Google Scholar 

  13. VanInsberghe, M., van den Berg, J., Andersson-Rolf, A., Clevers, H. & van Oudenaarden, A. Single-cell Ribo-seq reveals cell cycle-dependent translational pausing. Nature 597, 561–565 (2021).

    Article  PubMed  Google Scholar 

  14. Ozadam, H. et al. Single-cell quantification of ribosome occupancy in early mouse development. Nature 618, 1057–1064 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zeng, H. et al. Integrative in situ mapping of single-cell transcriptional states and tissue histopathology in a mouse model of Alzheimer’s disease. Nat. Neurosci. 26, 430–446 (2023).

    PubMed  PubMed Central  Google Scholar 

  16. Zeng, H. et al. Spatially resolved single-cell translatomics at molecular resolution. Science 380, eadd3067 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ren, J. et al. Spatiotemporally resolved transcriptomics reveals the subcellular RNA kinetic landscape. Nat. Methods 20, 695–705 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ren, J., Luo, S., Shi, H. & Wang, X. Spatial omics advances for in situ RNA biology. Mol. Cell 84, 3737–3757 (2024).

    Article  PubMed  Google Scholar 

  19. Liu, Y. et al. High-plex protein and whole transcriptome co-mapping at cellular resolution with spatial CITE-seq. Nat. Biotechnol. 41, 1405–1409 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ben-Chetrit, N. et al. Integration of whole transcriptome spatial profiling with protein markers. Nat. Biotechnol. 41, 788–793 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Vickovic, S. et al. SM-Omics is an automated platform for high-throughput spatial multi-omics. Nat. Commun 13, 795 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Frei, A. P. et al. Highly multiplexed simultaneous detection of RNAs and proteins in single cells. Nat. Methods 13, 269–275 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Burke, K. S., Antilla, K. A. & Tirrell, D. A. A fluorescence in situ hybridization method to quantify mRNA translation by visualizing ribosome–mRNA interactions in single cells. ACS Cent. Sci. 3, 425–433 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. tom Dieck, S. et al. Direct visualization of newly synthesized target proteins in situ. Nat. Methods 12, 411–414 (2015).

    Article  PubMed  Google Scholar 

  25. Erhard, F. et al. scSLAM-seq reveals core features of transcription dynamics in single cells. Nature 571, 419–423 (2019).

    Article  PubMed  Google Scholar 

  26. Cao, J., Zhou, W., Steemers, F., Trapnell, C. & Shendure, J. Sci-fate characterizes the dynamics of gene expression in single cells. Nat. Biotechnol. 38, 980–988 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hendriks, G.-J. et al. NASC-seq monitors RNA synthesis in single cells. Nat. Commun. 10, 3138 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Qiu, Q. et al. Massively parallel and time-resolved RNA sequencing in single cells with scNT-seq. Nat. Methods 17, 991–1001 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Shi, H. et al. Spatial atlas of the mouse central nervous system at molecular resolution. Nature 625, 552–561 (2023).

    Article  Google Scholar 

  30. Maher, K. et al. Mitigating autocorrelation during spatially resolved transcriptomics data analysis. Preprint at bioRxiv https://doi.org/10.1101/2023.06.30.547258 (2023).

  31. Chen, H. et al. Branched chemically modified poly(A) tails enhance the translation capacity of mRNA. Nat. Biotechnol 43, 194–203 (2025).

    Article  PubMed  Google Scholar 

  32. Chen, H. et al. Chemical and topological design of multicapped mRNA and capped circular RNA to augment translation. Nat. Biotechnol 43, 1128–1143 (2025).

    Article  PubMed  Google Scholar 

  33. He, Y. et al. ClusterMap for multi-scale clustering analysis of spatial gene expression. Nat. Commun. 12, 5909 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Li, Q. et al. Multimodal charting of molecular and functional cell states via in situ electro-sequencing. Cell 186, 2002–2017.e21 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sui, X. et al. Scalable spatial single-cell transcriptomics and translatomics in 3D thick tissue blocks. Preprint at bioRxiv https://doi.org/10.1101/2024.08.05.606553 (2024).

  36. Jao, C. Y. & Salic, A. Exploring RNA transcription and turnover in vivo by using click chemistry. Proc. Natl Acad. Sci. USA 105, 15779–15784 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rothschild, D. et al. Diversity of ribosomes at the level of rRNA variation associated with human health and disease. Cell Genom 4, 100629 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tang, Z. et al. Search and match across spatial omics samples at single-cell resolution. Nat. Methods 21, 1818–1829 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Goltsev, Y. & Nolan, G. CODEX multiplexed tissue imaging. Nat. Rev. Immunol. 23, 613 (2023).

    Article  PubMed  Google Scholar 

  40. Fazal, F. M. et al. Atlas of subcellular RNA localization revealed by APEX-seq. Cell 178, 473–490.e26 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhang, Y. et al. Gene panel selection for targeted spatial transcriptomics. Genome Biol. 25, 35 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chou, H.-H. Shared probe design and existing microarray reanalysis using PICKY. BMC Bioinformatics 11, 196 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bushnell, B. BBMap: a fast, accurate, splice-aware aligner. US Department of Energy Office of Scientific and Technical Information https://www.osti.gov/biblio/1241166 (2014).

  45. Zadeh, J. N. et al. NUPACK: analysis and design of nucleic acid systems. J. Comput. Chem. 32, 170–173 (2011).

    Article  PubMed  Google Scholar 

  46. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Weigert, M. et al. Star-convex polyhedra for 3D object detection and segmentation in microscopy. in Proc. 2020 IEEE Winter Conference on Applications of Computer Vision 3655–3662 (IEEE, 2020).

  48. Stirling, D. R. et al. CellProfiler 4: improvements in speed, utility and usability. BMC Bioinformatics 22, 433 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hao, Y. et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat. Biotechnol. 42, 293–304 (2024).

    Article  PubMed  Google Scholar 

  50. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 1–5 (2018).

    Article  Google Scholar 

  51. Palla, G. et al. Squidpy: a scalable framework for spatial omics analysis. Nat. Methods 19, 171–178 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lee, J. H. et al. Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues. Nat. Protoc. 10, 442–458 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ren, J. et al. Example dataset and expected outcomes of Spatially resolved in situ profiling of mRNA life cycle at transcriptome scale in intact cells and tissues. Zenodo https://doi.org/10.5281/zenodo.11176779 (2024).

Download references

Acknowledgements

H.S. is supported by Helen Hay Whitney Foundation postdoctoral fellowship. X.W. gratefully acknowledges support from the Searle Scholars Program, Thomas D. and Virginia W. Cabot Professorship, Edward Scolnick Professorship, Ono Pharma Breakthrough Science Initiative Award, Packard Fellowship for Science and Engineering, Merkin Institute Fellowship, NIH DP2 New Innovator Award, and Stanley Center gift from the Broad Institute. We thank Y. Zhou, W. X. Wang, M. Wu, Q. Zhang and Y. He for their helpful suggestions to the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

J.R. and H. Zeng. designed the protocols and performed the experiments. J.H., X.S., C.K.W., H. Zhou, M.W., Z.T. and S.L. performed the computational analysis. J.H. and M.W. cleaned up the starfinder package. J.R., H. Zeng and J.H. wrote the manuscript. H.S., J.T. and X.S. provided critical comments for the manuscript. X.W. supervised the study. All authors critically reviewed and revised the manuscript.

Corresponding author

Correspondence to Xiao Wang.

Ethics declarations

Competing interests

X.W. is a scientific cofounder of Stellaromics. X.W., J.R. and H. Zeng are inventors on patent applications (International Application No. PCT/US2022/031275, No. PCT/US2022/035271 and No. PCT/US2022/028012) related to STARmap PLUS, RIBOmap and TEMPOmap. The other authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Junyue Cao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key references

Zeng, H. et al. Nat. Neurosci. 26, 430–446 (2023): https://doi.org/10.1038/s41593-022-01251-x

Zeng, H. et al. Science 380, eadd3067 (2023): https://doi.org/10.1126/science.add3067

Ren, J. et al. Nat. Methods 20, 695–705 (2023): https://doi.org/10.1038/s41592-023-01829-8

Shi, H. et al. Nature 622, 552–561 (2023): https://doi.org/10.1038/s41586-023-06569-5

Chen, H. et al. Nat. Biotechnol. 43, 194–203 (2025): https://doi.org/10.1038/s41587-024-02174-7

Supplementary information

Reporting Summary

Supplementary Table 1

Complete list of primer and padlock probe hybridization regions for human transcriptome.

Supplementary Table 2

Complete list of primer and padlock probe hybridization regions for mouse transcriptome.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, J., Zeng, H., Huang, J. et al. Spatially resolved in situ profiling of mRNA life cycle at transcriptome scale in intact cells and tissues using STARmap PLUS, RIBOmap and TEMPOmap. Nat Protoc (2025). https://doi.org/10.1038/s41596-025-01248-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41596-025-01248-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载