+
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

In vivo ultrasound-induced luminescence imaging via trianthracene derivatives nanomaterials

Abstract

Photoluminescence imaging is valuable for elucidating biological processes and diagnosing diseases, but its tissue penetration is limited. We developed an imaging technique that utilizes ultrasound to activate the piezoelectric effect of a molecular probe, transforming ultrasound energy into chemical energy. The chemical energy is then converted into light emission through the chemiluminescence effect, improving penetration depth and overcoming traditional photoluminescence imaging constraints. Here we describe how to build two kinds of ultrasound-induced luminescence imaging systems. We introduce a procedure for the synthesis of trianthracene derivative (TD) nanoparticles with ultrasound-induced luminescence properties. The TDs are converted into water-soluble nanoparticles by a simple nanoprecipitation method. Utilizing the constructed ultrasound-induced luminescence imaging systems, TD nanoparticles can be stimulated to exhibit a luminescence spectrum peaking between 625 and 650 nm. Under optimized ultrasound excitation time and excitation power density parameters, the imaging quality and tissue penetration depth are effectively enhanced. Notably, our procedure enables the detection of both subcutaneous tumor models and challenging deep-tissue orthotopic gliomas. This ultrasound-mediated approach represents an important advancement over conventional photoluminescence imaging methods, enabling high-fidelity in vivo tumor imaging with superior signal quality. Establishment of the ultrasound-induced luminescence imaging systems requires ~2 h, the synthesis of TD molecules requires ~4 d, nanoparticle preparation requires ~1 d, ex vivo characterization requires ~1 d, investigation of the ultrasound-induced luminescence of TD nanoparticles requires ~3 d and ultrasound-induced luminescence imaging takes ~1 d. These steps can be performed by operators trained in chemical synthesis, nanomaterial synthesis standards and qualified in relevant animal experiments.

Key points

  • A technique for ultrasound-induced luminescence imaging, which uses a dual-stage energy conversion mechanism to enhance the performance of luminescence.

  • Alternative methods include photoluminescence imaging such as fluorescence imaging, chemiluminescence or bioluminescence, which suffer from signal attenuation, or Cerenkov luminescence, which lacks resolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Delayed ultrasound-induced luminescence imaging system and Real-time ultrasound-induced luminescence imaging system.
Fig. 2: Preparation and characterization of TD nanoparticles.
Fig. 3: Investigation of the ultrasound-induced luminescence of TD nanoparticles in the delayed ultrasound-induced luminescence imaging system.
Fig. 4: Investigation of the ultrasound-induced luminescence of TD nanoparticles in the real-time ultrasound-induced luminescence imaging system.
Fig. 5: Ultrasound-induced luminescence imaging and photoluminescence imaging penetration depth test.
Fig. 6: Ultrasound-induced luminescence imaging in vivo.

Similar content being viewed by others

Data availability

The main data discussed in this protocol are available in the supporting primary research papers (https://doi.org/10.1038/s41566-024-01387-1 and https://doi.org/10.1038/s41551-024-01274-8). The raw datasets are provided in the Source Data file. The online version also contains a Supplementary Information PDF file. All other data are available for research purposes from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Lavine, K. J. & Liu, Y. The dynamic cardiac cellular landscape: visualization by molecular imaging. Nat. Rev. Cardiol. 19, 345–347 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chen, Y.-S. et al. Ultra-high-frequency radio-frequency acoustic molecular imaging with saline nanodroplets in living subjects. Nat. Nanotechnol. 16, 717–724 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhao, Z. et al. Ultra-bright Raman dots for multiplexed optical imaging. Nat. Commun. 12, 1305 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ma, Y. et al. Rational design of a double-locked photoacoustic probe for precise in vivo imaging of cathepsin B in atherosclerotic plaques. J. Am. Chem. Soc. 145, 17881–17891 (2023).

    Article  CAS  PubMed  Google Scholar 

  5. Huang, X. et al. Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chem. Soc. Rev. 47, 2873–2920 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jiang, G. et al. “Zero” intrinsic fluorescence sensing‐platforms enable ultrasensitive whole blood diagnosis and in vivo imaging. Angew. Chem. Int. Ed. 63 (2024).

  7. Jiang, Y. & Pu, K. Molecular probes for autofluorescence-free optical imaging. Chem. Rev. 121, 13086–13131 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Wang, Y. et al. Enhancing fractionated cancer therapy: a triple-anthracene photosensitizer unleashes long-persistent photodynamic and luminous efficacy. J. Am. Chem. Soc. 146, 6252–6265 (2024).

    Article  CAS  PubMed  Google Scholar 

  9. Wang, S. et al. Anti-quenching NIR-II molecular fluorophores for in vivo high-contrast imaging and pH sensing. Nat. Commun. 10, 1058 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lei, L. et al. Noninvasive imaging of tumor glycolysis and chemotherapeutic resistance via de novo design of molecular afterglow scaffold. J. Am. Chem. Soc. 145, 24386–24400 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Wang, X. et al. Organic phosphors with bright triplet excitons for efficient X-ray-excited luminescence. Nat. Photon. 15, 187–192 (2021).

    Article  CAS  Google Scholar 

  12. Pei, P. et al. X-ray-activated persistent luminescence nanomaterials for NIR-II imaging. Nat. Nanotechnol. 16, 1011–1018 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Pratt, E. C., Shaffer, T. M., Zhang, Q., Drain, C. M. & Grimm, J. Nanoparticles as multimodal photon transducers of ionizing radiation. Nat. Nanotechnol. 13, 418–426 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kobayashi, H. et al. Multimodal nanoprobes for radionuclide and five-color near-infrared optical lymphatic imaging. ACS Nano 1, 258–264 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rosenkrans, Z. T. et al. Amplification of Cerenkov luminescence using semiconducting polymers for cancer theranostics. Adv. Funct. Mater. 33, 2302777 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang, M. et al. Chemiluminescence for bioimaging and therapeutics: recent advances and challenges. Chem. Soc. Rev. 49, 6800–6815 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Liu, Y. et al. Ratiometric afterglow luminescent nanoplatform enables reliable quantification and molecular imaging. Nat. Commun. 13, 2216 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Miao, Q. & Pu, K. Organic semiconducting agents for deep-tissue molecular imaging: second near-infrared fluorescence, self-luminescence, and photoacoustics. Adv. Mater. 30, 1801778 (2018).

    Article  Google Scholar 

  19. Chen, Y., Wang, S. & Zhang, F. Near-infrared luminescence high-contrast in vivo biomedical imaging. Nat. Rev. Bioeng. 1, 60–78 (2023).

    Article  CAS  Google Scholar 

  20. Smith, A. M., Mancini, M. C. & Nie, S. Second window for in vivo imaging. Nat. Nanotechnol. 4, 710–711 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cui, D., Li, J., Zhao, X., Pu, K. & Zhang, R. Semiconducting polymer nanoreporters for near-infrared chemiluminescence imaging of immunoactivation. Adv. Mater. 32, 1906314 (2020).

    Article  CAS  Google Scholar 

  22. Liu, J., Huang, J., Wei, X., Cheng, P. & Pu, K. Near-infrared chemiluminescence imaging of chemotherapy-induced peripheral neuropathy. Adv. Mater. 36, 2310605 (2024).

    Article  CAS  Google Scholar 

  23. Yao, Z., Zhang, B. S., Steinhardt, R. C., Mills, J. H. & Prescher, J. A. Multicomponent bioluminescence imaging with a π-extended luciferin. J. Am. Chem. Soc. 142, 14080–14089 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schramm, S. et al. Mechanically assisted bioluminescence with natural luciferase. Angew. Chem. Int. Ed. 59, 16485–16489 (2020).

    Article  CAS  Google Scholar 

  25. Yeh, H.-W. et al. Red-shifted luciferase–luciferin pairs for enhanced bioluminescence imaging. Nat. Methods 14, 971–974 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kotagiri, N., Niedzwiedzki, D. M., Ohara, K. & Achilefu, S. Activatable probes based on distance-dependent luminescence associated with Cerenkov radiation. Angew. Chem. Int. Ed. 52, 7756–7760 (2013).

    Article  CAS  Google Scholar 

  27. Pratt, E. C. et al. Prospective testing of clinical Cerenkov luminescence imaging against standard-of-care nuclear imaging for tumour location. Nat. Biomed. Eng. 6, 559–568 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ferreira, C. A., Ni, D., Rosenkrans, Z. T. & Cai, W. Radionuclide-activated nanomaterials and their biomedical applications. Angew. Chem. Int. Ed. 58, 13232–13252 (2019).

    Article  CAS  Google Scholar 

  29. Shaffer, T. M., Pratt, E. C. & Grimm, J. Utilizing the power of Cerenkov light with nanotechnology. Nat. Nanotechnol. 12, 106–117 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou, X. et al. Energy-trapping management in X-ray storage phosphors for Flexible 3D imaging. Adv. Mater. 35, 2212022 (2023).

    Article  CAS  Google Scholar 

  31. Chen, X., Song, J., Chen, X. & Yang, H. X-ray-activated nanosystems for theranostic applications. Chem. Soc. Rev. 48, 3073–3101 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. He, L. et al. Full-course NIR-II imaging-navigated fractionated photodynamic therapy of bladder tumours with X-ray-activated nanotransducers. Nat. Commun. 15, 8240 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Avola, D., Cinque, L., Fagioli, A., Foresti, G. & Mecca, A. Ultrasound medical imaging techniques: a survey. ACM Comput. Surv. 54, 67 (2021).

    Google Scholar 

  34. Ling, B. et al. Biomolecular ultrasound imaging of phagolysosomal function. ACS Nano 14, 12210–12221 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen, J. et al. Theranostic multilayer capsules for ultrasound imaging and guided drug delivery. ACS Nano 11, 3135–3146 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Qian, X. et al. Prospective assessment of breast cancer risk from multimodal multiview ultrasound images via clinically applicable deep learning. Nat. Biomed. Eng. 5, 522–532 (2021).

    Article  PubMed  Google Scholar 

  37. Zeng, W. & Ye, D. Seeing cancer via sonoafterglow. Nat. Biomed. Eng. 7, 197–198 (2023).

    Article  PubMed  Google Scholar 

  38. Xu, C. et al. Nanoparticles with ultrasound-induced afterglow luminescence for tumour-specific theranostics. Nat. Biomed. Eng. 7, 298–312 (2023).

    Article  CAS  PubMed  Google Scholar 

  39. Kim, G. et al. High-intensity focused ultrasound-induced mechanochemical transduction in synthetic elastomers. Proc. Natl Acad. Sci. USA 116, 10214–10222 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, Y. et al. In vivo ultrasound-induced luminescence molecular imaging. Nat. Photon. 18, 334–343 (2024).

    Article  CAS  Google Scholar 

  41. Wang, C. et al. Bioadhesive ultrasound for long-term continuous imaging of diverse organs. Science 377, 517–523 (2022).

    Article  CAS  PubMed  Google Scholar 

  42. Frenzel, H. & Schultes, H. Luminescenz im ultraschallbeschickten wasser. Z. Phys. Chem. 27B, 421–424 (1934).

    Article  Google Scholar 

  43. Crum, L. A. & Roy, R. A. Sonoluminescence. Science 266, 233–234 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Didenko, Y. T., McNamara Iii, W. B. & Suslick, K. S. Molecular emission from single-bubble sonoluminescence. Nature 407, 877–879 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Thompson, L. H. & Doraiswamy, L. K. Sonochemistry: science and engineering. Ind. Eng. Chem. Res. 38, 1215–1249 (1999).

    Article  CAS  Google Scholar 

  46. Yonghong, H., Da, X., Shici, T., Yonghong, T. & Ken-ichi, U. In vivo sonoluminescence imaging with the assistance of FCLA. Phys. Med. Biol. 47, 1535 (2002).

    Article  Google Scholar 

  47. Liu, T. et al. Endogenous catalytic generation of O2 bubbles for in situ ultrasound-guided high intensity focused ultrasound ablation. ACS Nano 11, 9093–9102 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Liu, R., Tang, J., Xu, Y. & Dai, Z. Bioluminescence imaging of inflammation in vivo based on bioluminescence and fluorescence resonance energy transfer using nanobubble ultrasound contrast agent. ACS Nano 13, 5124–5132 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Henglein, A., Ulrich, R. & Lilie, J. Luminescence and chemical action by pulsed ultrasound. J. Am. Chem. Soc. 111, 1974–1979 (1989).

    Article  CAS  Google Scholar 

  50. Wang, Y. et al. Ultrabright and ultrafast afterglow imaging in vivo via nanoparticles made of trianthracene derivatives. Nat. Biomed. Eng. 9, 656–670 (2025).

    Article  CAS  PubMed  Google Scholar 

  51. Liu, Y. et al. Chemical design of activatable photoacoustic probes for precise biomedical applications. Chem. Rev. 122, 6850–6918 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Zhao, Z., Swartchick, C. B. & Chan, J. Targeted contrast agents and activatable probes for photoacoustic imaging of cancer. Chem. Soc. Rev. 51, 829–868 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wu, R. et al. Ultrasound-activated NIR chemiluminescence for deep tissue and tumor foci imaging. Anal. Chem. 95, 11219–11226 (2023).

    Article  CAS  PubMed  Google Scholar 

  54. Guo, J. et al. Large aromatic hydrocarbon radical cation with global aromaticity and state-associated magnetic activity. Chem. Mater. 32, 5927–5936 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (grant no. 2019YFA0210100 (to X.-B.Z.)) and the National Natural Science Foundation of China (grant nos. U21A20287 (to G.S.) and 22234003 (to X.-B.Z.)).

Author information

Authors and Affiliations

Authors

Contributions

G.S. and X.-B.Z. designed the study. X.X., Y.W. and Z.L. performed experiments, collected and analyzed data and wrote the manuscript.

Corresponding authors

Correspondence to Xiao-Bing Zhang or Guosheng Song.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Roman A. Barmin, Wenfeng Xia and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key references

Wang, Y. et al. Nat. Photon. 18, 334–343 (2024): https://doi.org/10.1038/s41566-024-01387-1

Wang, Y. et al. Nat. Biomed. Eng. 9, 656–670 (2025): https://doi.org/10.1038/s41551-024-01274-8

Wang, Y. et al. J. Am. Chem. Soc. 146, 6252–6265 (2024): https://doi.org/10.1021/jacs.3c14387

Supplementary information

Supplementary Information

Supplementary Figs. 1–14, Table 1 and Procedure.

Reporting Summary

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Wang, Y., Li, Z. et al. In vivo ultrasound-induced luminescence imaging via trianthracene derivatives nanomaterials. Nat Protoc (2025). https://doi.org/10.1038/s41596-025-01246-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41596-025-01246-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载