+
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The neuronal chromatin landscape in brains from individuals with schizophrenia is linked to early fetal development

Abstract

Noncoding variants increase neuropsychiatric disease risk, but our understanding of their cell-type-specific role remains incomplete. We conducted large-scale chromatin accessibility profiling of neurons and non-neurons from 2 neocortical regions in 1,393 libraries. We observed substantial differences in neuronal chromatin accessibility between schizophrenia (SCZ) cases and controls, with upregulated open chromatin regions (OCRs) in neurons associated with SCZ risk loci. A comparison of SCZ-associated OCRs with fetal brain-specific OCRs revealed a strong correlation between upregulated changes in SCZ chromatin and openness in fetal cortical brains, linking disease-related chromatin alterations to neurodevelopment. Here we show that a prominent neuronal trans-regulatory domain containing upregulated OCRs consolidates key neurodevelopmental chromatin signatures and is enriched for immature glutamatergic neurons. These findings link altered adult cortical chromatin states to early developmental mechanisms in SCZ. This study provides a comprehensive cell-type-resolved chromatin accessibility resource for the human cortex and offers insights into the regulatory architecture underlying SCZ risk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Population-scale chromatin accessibility analysis in the human brain.
Fig. 2: SCZ OCRs and inferred SCZ trajectory in PFC neurons.
Fig. 3: cis-regulatory landscape and TRDs from hierarchical clustering of neuronal SCZ CRDs from the PFC.
Fig. 4: Analysis of cell-type specificity of neuronal PFC SCZ OCRs in fetal cortical scATAC-seq data.
Fig. 5: PFC TRD6 can stratify SCZ, BD and MDD cases and controls in the MVP cohort.

Similar content being viewed by others

Data availability

Raw FASTQ files are available at NIMH Data Archive (https://nda.nih.gov/edit_collection.html?id=5063), under Collection ID 5063 (CommonMind Consortium), see dataset ID 72038 (CMC FANS-sorted ATAC-seq). Access to NDA requires data use agreement approval. Controlled access is required to protect participant confidentiality and comply with informed consent and NIH data-sharing policies. Researchers may request access by submitting a Data Use Agreement through the NDA portal, specifying the Collection and Dataset IDs. Requests are reviewed by NDA and decisions are typically issued within ten business days. Browsable UCSC genome browser tracks of our processed ATAC-seq data are available as a resource at https://genome.ucsc.edu/s/girdhk01/CMC_ATAC. OCR coordinates, differential OCRs, CRDs and differential CRDs are available at the Synapse repository at syn52264219. Access to synapse requires data use agreement approval. These are Tier 1 Synapse datasets and can be accessed without restriction by any registered Synapse user after agreeing to the Synapse Terms of Use. External validation sets used in the study are ATAC-seq fetal-specific peaks that can be found at https://www.synapse.org/#!Synapse:syn52267265 and CTCF ChIP-seq on human neural cell (GEO GSE127577). TruSeq3-PE.fa file was downloaded from the adapter folder under the trimmotic repository via GitHub at https://github.com/timflutre/trimmomatic/blob/master/adapters/TruSeq3-PE.fa. Supplementary Information is available for this study at https://www.synapse.org/#!Synapse:syn52264219. Correspondence and requests for materials should be addressed to K.G and P.R. Reprints and permissions information are available at www.nature.com/reprints. Source data are provided with this paper.

Code availability

All publicly available software used is noted in Methods. Full decorate code can be found via Zenodo at https://doi.org/10.5281/zenodo.17048920 (ref. 69).

References

  1. Nestler, E. J., Peña, C. J., Kundakovic, M., Mitchell, A. & Akbarian, S. Epigenetic basis of mental illness. Neuroscientist 22, 447–463 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Kundakovic, M. & Champagne, F. A. Early-life experience, epigenetics, and the developing brain. Neuropsychopharmacology 40, 141–153 (2015).

    Article  PubMed  Google Scholar 

  3. Peña, C. J., Bagot, R. C., Labonté, B. & Nestler, E. J. Epigenetic signaling in psychiatric disorders. J. Mol. Biol. 426, 3389–3412 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wahbeh, M. H. & Avramopoulos, D. Gene-environment interactions in schizophrenia: a literature review. Genes 12, 1850 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bryois, J. et al. Evaluation of chromatin accessibility in prefrontal cortex of individuals with schizophrenia. Nat. Commun. 9, 3121 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Girdhar, K. et al. Chromatin domain alterations linked to 3D genome organization in a large cohort of schizophrenia and bipolar disorder brains. Nat. Neurosci. 25, 474–483 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fullard, J. F. et al. An atlas of chromatin accessibility in the adult human brain. Genome Res. 28, 1243–1252 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nott, A. et al. Brain cell type-specific enhancer-promoter interactome maps and disease-risk association. Science 366, 1134–1139 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hauberg, M. E. et al. Common schizophrenia risk variants are enriched in open chromatin regions of human glutamatergic neurons. Nat. Commun. 11, 5581 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Corces, M. R. et al. The chromatin accessibility landscape of primary human cancers. Science 362, eaav1898 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Roadmap Epigenomics Consortium et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

    Article  PubMed Central  Google Scholar 

  12. Bendl, J. et al. The three-dimensional landscape of cortical chromatin accessibility in Alzheimer’s disease. Nat. Neurosci. 25, 1366–1378 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dong, P. et al. Population-level variation in enhancer expression identifies disease mechanisms in the human brain. Nat. Genet. 54, 1493–1503 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fulco, C. P. et al. Activity-by-contact model of enhancer-promoter regulation from thousands of CRISPR perturbations. Nat. Genet. 51, 1664–1669 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Skene, N. G. et al. Genetic identification of brain cell types underlying schizophrenia. Nat. Genet. 50, 825–833 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Trubetskoy, V. et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 604, 502–508 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mullins, N. et al. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat. Genet. 53, 817–829 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stahl, E. A. et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat. Genet. 51, 793–803 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rahman, S. et al. Lineage specific 3D genome structure in the adult human brain and neurodevelopmental changes in the chromatin interactome. Nucleic Acids Res. 51, 11142–11161 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mukherjee, S. et al. Molecular estimation of neurodegeneration pseudotime in older brains. Nat. Commun. 11, 5781 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Coifman, R. R. & Lafon, S. Diffusion maps. Appl. Comput. Harmon. Anal. 21, 5–30 (2006).

    Article  Google Scholar 

  22. Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9, 5233 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Delaneau, O. et al. Chromatin three-dimensional interactions mediate genetic effects on gene expression. Science 364, eaat8266 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Avalos, D. et al. Genetic variation in cis-regulatory domains suggests cell type-specific regulatory mechanisms in immunity. Commun. Biol. 6, 335 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Alver, M., Lykoskoufis, N., Ramisch, A., Dermitzakis, E. T. & Ongen, H. Leveraging interindividual variability of regulatory activity for refining genetic regulation of gene expression in schizophrenia. Mol. Psychiatry 27, 5177–5185 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Harrell, F. E. Jr, Lee, K. L. & Mark, D. B. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat. Med. 15, 361–387 (1996).

    Article  PubMed  Google Scholar 

  27. Trevino, A. E. et al. Chromatin and gene-regulatory dynamics of the developing human cerebral cortex at single-cell resolution. Cell 184, 5053–5069.e23 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Emani, P. S. et al. Single-cell genomics and regulatory networks for 388 human brains. Science 384, eadi5199 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhu, K. et al. Multi-omic profiling of the developing human cerebral cortex at the single-cell level. Sci. Adv. 9, eadg3754 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bendl, J. et al. Chromatin accessibility provides a window into the genetic etiology of human brain disease. Trends Genet. https://doi.org/10.1016/j.tig.2025.01.001 (2025).

    Article  PubMed  Google Scholar 

  31. Marsman, A. et al. Glutamate in schizophrenia: a focused review and meta-analysis of 1H-MRS studies. Schizophr. Bull. 39, 120–129 (2013).

    Article  PubMed  Google Scholar 

  32. Paulsen, B. et al. Autism genes converge on asynchronous development of shared neuron classes. Nature 602, 268–273 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Birnbaum, R. & Weinberger, D. R. The genesis of schizophrenia: an origin story. Am. J. Psychiatry 181, 482–492 (2024).

    Article  PubMed  Google Scholar 

  34. Fatemi, S. H. & Folsom, T. D. The neurodevelopmental hypothesis of schizophrenia, revisited. Schizophr. Bull. 35, 528–548 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109, 21.29.1–21.29.9 (2015).

    Article  PubMed  Google Scholar 

  36. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. van de Geijn, B., McVicker, G., Gilad, Y. & Pritchard, J. K. WASP: allele-specific software for robust molecular quantitative trait locus discovery. Nat. Methods 12, 1061–1063 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Li, H. et al. The sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Landt, S. G. et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 22, 1813–1831 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Orchard, P., Kyono, Y., Hensley, J., Kitzman, J. O. & Parker, S. C. J. Quantification, dynamic visualization, and validation of bias in ATAC-Seq data with ataqv. Cell Syst. 10, 298–306.e4 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Amemiya, H. M., Kundaje, A. & Boyle, A. P. The ENCODE Blacklist: identification of problematic regions of the genome. Sci. Rep. 9, 9354 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sherry, S. T. et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29, 308–311 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lawrence, M. et al. Software for computing and annotating genomic ranges. PLoS Comput. Biol. 9, e1003118 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hoffman, G. E. et al. CommonMind Consortium provides transcriptomic and epigenomic data for schizophrenia and bipolar disorder. Sci. Data 6, 180 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Hoffman, G. E. & Schadt, E. E. variancePartition: interpreting drivers of variation in complex gene expression studies. BMC Bioinf. 17, 483 (2016).

    Article  Google Scholar 

  50. Hoffman, G. E. & Roussos, P. Dream: powerful differential expression analysis for repeated measures designs. Bioinformatics 37, 192–201 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bentsen, M. et al. ATAC-seq footprinting unravels kinetics of transcription factor binding during zygotic genome activation. Nat. Commun. 11, 4267 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: uniform manifold approximation and projection. J. Open Source Softw. 3, 861 (2018).

    Article  Google Scholar 

  54. Haghverdi, L., Büttner, M., Wolf, F. A., Buettner, F. & Theis, F. J. Diffusion pseudotime robustly reconstructs lineage branching. Nat. Methods 13, 845–848 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Gaziano, J. M. et al. Million Veteran Program: a mega-biobank to study genetic influences on health and disease. J. Clin. Epidemiol. 70, 214–223 (2016).

    Article  PubMed  Google Scholar 

  56. Harrington, K. M. et al. Gender differences in demographic and health characteristics of the Million Veteran Program cohort. Womens Health Iss. 29, S56–S66 (2019).

    Article  Google Scholar 

  57. Gelernter, J. et al. Genome-wide association study of post-traumatic stress disorder reexperiencing symptoms in >165,000 US veterans. Nat. Neurosci. 22, 1394–1401 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fang, H. et al. Harmonizing genetic ancestry and self-identified race/ethnicity in genome-wide association studies. Am. J. Hum. Genet. 105, 763–772 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. 1000 Genomes Project Consortium et al. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012).

    Article  Google Scholar 

  60. Lowy-Gallego, E. et al. Variant calling on the GRCh38 assembly with the data from phase three of the 1000 Genomes Project. Wellcome Open Res. 4, 50 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Rayner, W. HRC or 1000G Imputation preparation and checking (Univ. of Oxford, 2020); https://www.chg.ox.ac.uk/~wrayner/tools/

  62. Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature 590, 290–299 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. 1000 Genomes Project Consortium et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article  Google Scholar 

  64. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Choi, S. W. & O’Reilly, P. F. PRSice-2: polygenic risk score software for biobank-scale data. Gigascience 8, giz082 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hoffman, G. E. misc_vp: miscellaneous functions for variancePartition. Zenodo https://doi.org/10.5281/zenodo.17259397 (2025).

  67. Stegle, O., Parts, L., Piipari, M., Winn, J. & Durbin, R. Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses. Nat. Protoc. 7, 500–507 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hoffman, G. E., Bendl, J., Girdhar, K. & Roussos, P. decorate: differential epigenetic correlation test. Bioinformatics 36, 2856–2861 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hoffman, G. E. gk1610/decorate: v1.0.0. Zenodo https://doi.org/10.5281/zenodo.17048920 (2025).

  70. Chiu, D. S. & Talhouk, A. diceR: an R package for class discovery using an ensemble driven approach. BMC Bioinf. 19, 11 (2018).

    Article  Google Scholar 

  71. Hao, Y. et al. Dictionary learning for integrative, multimodal, and scalable single-cell analysis. Nat. Biotechnol. 42, 293–304 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  72. de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  73. McLean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the patients and families who donated material for these studies. Brain tissue for the study was obtained through the NIH Neurobiobank from the following brain bank collections: The Mount Sinai/JJ Peters VA Medical Center NIH Brain and Tissue Repository, Brain Tissue Donation Program at the University of Pittsburgh and the HBCC within the National Institute of Mental Health’s Intramural Research Program (NIMH-IRP). We thank the computational resources and staff expertise provided by the Scientific Computing at the Icahn School of Medicine at Mount Sinai. We thank members of the Roussos Lab for helpful discussion. This research is based on data from the MVP, Office of Research and Development, and Veterans Health Administration and was supported by award VA Merit I01BX004189. This publication does not represent the views of the Department of Veteran Affairs or the US Government. We thank the participants of the MVP, the scientists, clinicians and supportive staff involved in the construction of this biobank, and the scientific computing staff for the expertise that they provided. This study was supported by the National Institute of Mental Health (NIH grant nos. RF1-MH128970 to P.R., R01-MH110921 to P.R., U01-MH116442 to P.R., R01-MH125246 to P.R., R01-MH109897 to P.R. and 75N95019C00049 to V.H.); the National Institute on Aging (NIH grant nos. R01-AG050986 to P.R., R01-AG067025 to P.R. and R01-AG065582 to P.R.); by Veterans Affairs Merit (grant nos. I01BX002395 and I01BX004189 to P.R.). The HBCC is supported through project ZIC-MH002903. This work was supported in part through the computational and data resources and staff expertise provided by Scientific Computing and Data at the Icahn School of Medicine at Mount Sinai and supported by the Clinical and Translational Science Awards (CTSA) grant UL1TR004419 from the National Center for Advancing Translational Sciences. Research reported in this publication was also supported by the Office of Research Infrastructure of the National Institutes of Health under award nos. S10OD026880 and S10OD030463. This research was supported (in part) by the Intramural Research Program of the National Institutes of Health (NIH). The contributions of the NIH author(s) were made as part of their official duties as NIH federal employees, are in compliance with agency policy requirements, and are considered works of the US Government. However, the findings and conclusions presented in this study are those of the author(s) and do not necessarily reflect the views of the NIH or the US Department of Health and Human Services.

Author information

Authors and Affiliations

Authors

Contributions

Conception and study design: P.R. Data generation: S.P.K., R.M., S.M.R., S.R. and J.F.F. Data processing and analysis: K.G., J.B., A.B., C.C.F., K.T., R.B., S.V., D.M., P.D., G.V. and G.E.H. Provision of brain tissue and resources: V.H., P.K.A., S.M. and D.A.L. Writing of the paper: K.G., J.B., J.F.F. and P.R., with input from all authors.

Corresponding authors

Correspondence to Kiran Girdhar or Panos Roussos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks Inge Holtman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Captions for Supplementary Figs. 1–30, Methods 1–7 and references.

Reporting Summary

Supplementary Tables 1–7

Supplementary Tables 1–7.

Supplementary Data 1

Source data for Supplementary Fig. 1.

Supplementary Data 2

Source data for Supplementary Fig. 2.

Supplementary Data 3

Source data for Supplementary Fig. 3.

Supplementary Data 4

Source data for Supplementary Fig. 4.

Supplementary Data 5

Source data for Supplementary Fig. 5.

Supplementary Data 6

Source data for Supplementary Fig. 6.

Supplementary Data 7

Source data for Supplementary Fig. 7.

Supplementary Data 8

Source data for Supplementary Fig. 8.

Supplementary Data 9

Source data for Supplementary Fig. 9.

Supplementary Data 10

Source data for Supplementary Fig. 10.

Supplementary Data 11

Source data for Supplementary Fig. 11.

Supplementary Data 12

Source data for Supplementary Fig. 12.

Supplementary Data 13

Source data for Supplementary Fig. 13.

Supplementary Data 14

Source data for Supplementary Fig. 14.

Supplementary Data 15

Source data for Supplementary Fig. 15.

Supplementary Data 16

Source data for Supplementary Fig. 16.

Supplementary Data 17

Source data for Supplementary Fig. 17.

Supplementary Data 18

Source data for Supplementary Fig. 18.

Supplementary Data 19

Source data for Supplementary Fig. 19.

Supplementary Data 20

Source data for Supplementary Fig. 20.

Supplementary Data 21

Source data for Supplementary Fig. 21.

Supplementary Data 22

Source data for Supplementary Fig. 22.

Supplementary Data 23

Source data for Supplementary Fig. 23.

Supplementary Data 24

Source data for Supplementary Fig. 24.

Supplementary Data 25

Source data for Supplementary Fig. 25.

Supplementary Data 26

Source data for Supplementary Fig. 26.

Supplementary Data 27

Source data for Supplementary Fig. 27.

Supplementary Data 28

Source data for Supplementary Fig. 28.

Supplementary Data 29

Source data for Supplementary Fig. 29.

Supplementary Data 30

Source data for Supplementary Fig. 30.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girdhar, K., Bendl, J., Baumgartner, A. et al. The neuronal chromatin landscape in brains from individuals with schizophrenia is linked to early fetal development. Nat Neurosci (2025). https://doi.org/10.1038/s41593-025-02081-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41593-025-02081-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载