+
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Whole-brain reconstruction of fiber tracts based on cytoarchitectonic organization

Abstract

Mapping of axon trajectories is crucial for understanding brain organization. Using whole-brain high-throughput fluorescence imaging, we developed a cytoarchitecture-based link estimation (CABLE) method for accurate fiber tract mapping at cellular resolution. This method infers the fiber direction from the inherent anisotropy of the nucleus or soma shape and spatial arrangement of adjacent cells. The inferred fiber tracts were validated by tracing virally labeled individual axons in the monkey brain. This CABLE method could disentangle complex intersecting or bending fibers that were uncertain in diffusion magnetic resonance imaging tractography, allowing accurate brain-wide fiber tract reconstruction in marmoset and macaque brains. Finally, we applied CABLE for rapid mapping of axon fiber abnormalities in diseased neonatal human brain tissues, establishing a path for high-resolution brain mapping of fiber tracts in the human brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cytoarchitectonic orientation in the macaque brain.
Fig. 2: Single-cell spatial transcriptomics and immunostaining analysis reveal orientation coherence across different cell types.
Fig. 3: Alignment of axonal and cytoarchitectonic orientations revealed by brain-wide neuronal tracing.
Fig. 4: Reconstruction of fiber tracts in the marmoset with CABLE tractography.
Fig. 5: Application of CABLE to the diseased newborn human brain.

Similar content being viewed by others

Data availability

The complete image datasets for macaque, marmoset, human and mouse brains exceed 300 TB in total size and are therefore impractical to upload in full to a public data repository. A subset of the data is available at https://cable.bigconnectome.org, including: demo datasets for testing the CABLE analysis code; a representative slice image of the macaque brain (RM009) used in Fig. 1c; the Stereo-seq dataset analyzed in Fig. 2, Extended Data Figs. 5 and 6 and Supplementary Figs. 911; and a multimodal marmoset brain dataset (CJ004) used in Figs. 3 and 4. Additional datasets related to any figure or video in this work are available from the corresponding author upon reasonable request, using feasible data transfer methods such as physical hard drives, cloud storage or on-site access.

Code availability

The code and installation guide for CABLE analysis can be found at the GitHub repository (https://github.com/BrainCABLE) under the MIT License. A frozen version of the code has been archived on Zenodo (https://doi.org/10.5281/zenodo.17092643)87. A step-by-step protocol for using CABLE analysis in various datasets has been deposited on the protocols.io repository88.

References

  1. Fields, R. D. White matter in learning, cognition and psychiatric disorders. Trends Neurosci. 31, 361–370 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu, C. et al. A resource for the detailed 3D mapping of white matter pathways in the marmoset brain. Nat. Neurosci. 23, 271–280 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bihan, D. L. Looking into the functional architecture of the brain with diffusion MRI. Nat. Rev. Neurosci. 4, 469–480 (2003).

    Article  PubMed  Google Scholar 

  4. Jeurissen, B., Descoteaux, M., Mori, S. & Leemans, A. Diffusion MRI fiber tractography of the brain. NMR Biomed. 32, e3785 (2019).

    Article  PubMed  Google Scholar 

  5. Larsen, L., Griffin, L. D., GRäßel, D., Witte, O. W. & Axer, H. Polarized light imaging of white matter architecture. Microsc. Res. Tech. 70, 851–863 (2007).

    Article  PubMed  Google Scholar 

  6. Basser, P. J., Mattiello, J. & Bihan, D. L. MR diffusion tensor spectroscopy and imaging. Biophys. J. 66, 259–267 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tuch, D. S. Q-ball imaging. Magn. Reson. Med. 52, 1358–1372 (2004).

    Article  PubMed  Google Scholar 

  8. Wedeen, V. J. et al. The geometric structure of the brain fiber pathways. Science 335, 1628–1634 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Axer, M. et al. Estimating fiber orientation distribution functions in 3D-polarized light imaging. Front. Neuroanat. 10, 40 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Schurr, R. & Mezer, A. A. The glial framework reveals white-matter fiber architecture in human and primate brains. Science 374, 762–767 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Hayashi, T. et al. The nonhuman primate neuroimaging and neuroanatomy project. NeuroImage 229, 117726 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Lin, M. K. et al. A high-throughput neurohistological pipeline for brain-wide mesoscale connectivity mapping of the common marmoset. eLife 8, e40042 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yan, M. et al. Mapping brain-wide excitatory projectome of primate prefrontal cortex at submicron resolution and comparison with diffusion tractography. eLife 11, e72534 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bullock, D. N. et al. A taxonomy of the brain’s white matter: twenty-one major tracts for the 21st century. Cereb. Cortex 32, 4524–4548 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wang, H. et al. Scalable volumetric imaging for ultrahigh-speed brain mapping at synaptic resolution. Natl Sci. Rev. 6, 982–992 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Xu, F. et al. High-throughput mapping of a whole rhesus monkey brain at micrometer resolution. Nat. Biotechnol. 39, 1521–1528 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185, 1777–1792 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Suzuki, M. & Raisman, G. The glial framework of central white matter tracts: Segmented rows of contiguous interfascicular oligodendrocytes and solitary astrocytes give rise to a continuous meshwork of transverse and longitudinal processes in the adult rat fimbria. Glia 6, 222–235 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Andersson, M. et al. Axon morphology is modulated by the local environment and impacts the noninvasive investigation of its structure–function relationship. Proc. Natl Acad. Sci. USA 117, 33649–33659 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schmahmann, J. D. & Pandya, D. N. Fiber Pathways of the Brain (Oxford Univ. Press, 2006).

  21. Tournier, J.-D., Calamante, F., Gadian, D. G. & Connelly, A. Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. NeuroImage 23, 1176–1185 (2004).

    Article  PubMed  Google Scholar 

  22. Anderson, A. W. Measurement of fiber orientation distributions using high angular resolution diffusion imaging. Magn. Reson. Med. 54, 1194–1206 (2005).

    Article  PubMed  Google Scholar 

  23. Szczupak, D. et al. Direct interhemispheric cortical communication via thalamic commissures: a new white-matter pathway in the rodent brain. Cereb. Cortex 31, 4642–4651 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Reveley, C. et al. Diffusion MRI anisotropy in the cerebral cortex is determined by unmyelinated tissue features. Nat. Commun. 13, 6702 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lin, J. -P. et al. Transcriptomic architecture of nuclei in the marmoset CNS. Nat. Commun. 13, 5531 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nat. Biotechnol. 40, 661–671 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Goertsen, D. et al. AAV capsid variants with brain-wide transgene expression and decreased liver targeting after intravenous delivery in mouse and marmoset. Nat. Neurosci. 25, 106–115 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Ieva, A. D., Fathalla, H., Cusimano, M. D. & Tschabitscher, M. The indusium griseum and the longitudinal striae of the corpus callosum. Cortex 62, 34–40 (2015).

    Article  PubMed  Google Scholar 

  29. Thomas, C. et al. Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc. Natl Acad. Sci. USA 111, 16574–16579 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Reveley, C. et al. Superficial white matter fiber systems impede detection of long-range cortical connections in diffusion MR tractography. Proc. Natl Acad. Sci. USA 112, E2820–E2828 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tournier, J. -D. et al. MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation. NeuroImage 202, 116137 (2019).

    Article  PubMed  Google Scholar 

  32. Demeter, S., Rosene, D. L. & van Hoesen, G. W. Interhemispheric pathways of the hippocampal formation, presubiculum, and entorhinal and posterior parahippocampal cortices in the rhesus monkey: the structure and organization of the hippocampal commissures. J. Comp. Neurol. 233, 30–47 (1985).

    Article  CAS  PubMed  Google Scholar 

  33. Demeter, S., Rosene, D. L. & Hoesen, G. W. V. Fields of origin and pathways of the interhemispheric commissures in the temporal lobe of macaques. J. Comp. Neurol. 302, 29–53 (1990).

    Article  CAS  PubMed  Google Scholar 

  34. Schiering, I. A. M. et al. Correlation between clinical and histologic findings in the human neonatal hippocampus after perinatal asphyxia. J. Neuropathol. Exp. Neurol. 73, 324–334 (2014).

    Article  PubMed  Google Scholar 

  35. Seiriki, K. et al. High-speed and scalable whole-brain imaging in rodents and primates. Neuron 94, 1085–1100 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Zhou, C. et al. Continuous subcellular resolution three-dimensional imaging on intact macaque brain. Sci. Bull. 67, 85–96 (2022).

    Article  Google Scholar 

  37. Park, J. et al. Integrated platform for multiscale molecular imaging and phenotyping of the human brain. Science 384, eadh9979 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Luo, L. Architectures of neuronal circuits. Science 373, eabg7285 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dickson, B. J. Molecular mechanisms of axon guidance. Science 298, 1959–1964 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Chicurel, M. E., Chen, C. S. & Ingber, D. E. Cellular control lies in the balance of forces. Curr. Opin. Cell Biol. 10, 232–239 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Fletcher, D. A. & Mullins, R. D. Cell mechanics and the cytoskeleton. Nature 463, 485–492 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Essen, D. C. V. A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385, 313–318 (1997).

    Article  PubMed  Google Scholar 

  43. Essen, D. C. V. A 2020 view of tension-based cortical morphogenesis. Proc. Natl Acad. Sci. USA 117, 32868–32879 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Apicella, A. J. & Marchionni, I. VIP-expressing GABAergic neurons: disinhibitory vs. inhibitory motif and its role in communication across neocortical areas. Front. Cell. Neurosci. 16, 811484 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Freitag, F. B., Ahemaiti, A., Weman, H. M., Ambroz, K. & Lagerström, M. C. Targeting barrel field spiny stellate cells using a vesicular monoaminergic transporter 2-Cre mouse line. Sci. Rep. 11, 3239 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Koshiyama, D. et al. White matter microstructural alterations across four major psychiatric disorders: mega-analysis study in 2937 individuals. Mol. Psychiatry 25, 883–895 (2020).

    Article  PubMed  Google Scholar 

  47. Hatton, S. N. et al. White matter abnormalities across different epilepsy syndromes in adults: an ENIGMA-Epilepsy study. Brain 143, 2454–2473 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Li, S. et al. Single-neuron reconstruction of the macaque primary motor cortex reveals the diversity of neuronal morphology. Neurosci. Bull. 41, 525–530 (2024).

    Article  Google Scholar 

  49. Shen, Y. et al. Mapping big brains at subcellular resolution in the era of big data in zoology. Zool. Res. 43, 597–599 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Shapson-Coe, A. et al. A petavoxel fragment of human cerebral cortex reconstructed at nanoscale resolution. Science 384, eadk4858 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Brancaccio, P. Preconditioning in hypoxic-ischemic neonate mice triggers Na+ –Ca2+ exchanger-dependent neurogenesis. Cell Death Discov. 8, 318 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rumajogee, P., Bregman, T., Miller, S. P., Yager, J. Y. & Fehlings, M. G. Rodent hypoxia–ischemia models for cerebral palsy research: a systematic review. Front. Neurol. 7, 57 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Vannucci, S. J. & Back, S. A. The Vannucci model of hypoxic-ischemic injury in the neonatal rodent: 40 years later. Dev. Neurosci. 44, 186–193 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Howard, A. F. D. et al. An open resource combining multi-contrast MRI and microscopy in the macaque brain. Nat. Commun. 14, 4320 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tendler, B. C. et al. The Digital Brain Bank, an open access platform for post-mortem imaging datasets. eLife 11, e73153 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hu, X., Shen, Y., Yang, Y., Bi, G. -Q. & Xu, F. SMART brain mapping. protocols.io https://doi.org/10.17504/protocols.io.36wgq658klk5 (2025).

  57. Ma, C. et al. High precision vibration sectioning for 3D imaging of the whole central nervous system. J. Neurosci. Methods 399, 109966 (2023).

    Article  PubMed  Google Scholar 

  58. Zhao, R. et al. NeuroFly: a framework for whole-brain single neuron reconstruction. Preprint at https://arxiv.org/abs/2411.04715 (2024).

  59. Sofroniew, N. et al. napari: a multi-dimensional image viewer for Python. Zenodo https://doi.org/10.5281/zenodo.15193038 (2025).

  60. Cordero-Grande, L., Christiaens, D., Hutter, J., Price, A. N. & Hajnal, J. V. Complex diffusion-weighted image estimation via matrix recovery under general noise models. NeuroImage 200, 391–404 (2019).

    Article  PubMed  Google Scholar 

  61. Andersson, J. L. R. & Sotiropoulos, S. N. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. NeuroImage 125, 1063–1078 (2016).

    Article  PubMed  Google Scholar 

  62. Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18, 100–106 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Pachitariu, M. & Stringer, C. Cellpose 2.0: how to train your own model. Nat. Methods 19, 1634–1641 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lopez, R. et al. DestVI identifies continuums of cell types in spatial transcriptomics data. Nat. Biotechnol. 40, 1360–1369 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection for dimension reduction. Preprint at https://arxiv.org/abs/1802.03426 (2018).

  67. Krienen, F. M. et al. A marmoset brain cell census reveals regional specialization of cellular identities. Sci. Adv. 9, eadk3986 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fitzgibbon, A., Pilu, M. & Fisher, R. B. Direct least square fitting of ellipses. IEEE Trans. Pattern Anal. Mach. Intell. 21, 476–480 (1999).

    Article  Google Scholar 

  69. Adamson, C. L. et al. Thickness profile generation for the corpus callosum using Laplace’s equation. Hum. Brain Mapp. 32, 2131–2140 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Bigun, J. Optimal Orientation Detection of Linear Symmetry. In Proc. IEEE-First International Conference on Computer Vision 433–438 (IEEE, 1987).

  71. Jähne, B. Spatio-Temporal Image Processing: Theory and Scientific Applications (Springer, 1993).

  72. Jeurissen, B., Leemans, A., Tournier, J., Jones, D. K. & Sijbers, J. Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging. Hum. Brain Mapp. 34, 2747–2766 (2013).

    Article  PubMed  Google Scholar 

  73. Dell’Acqua, F. & Tournier, J. D. Modelling white matter with spherical deconvolution: how and why? NMR Biomed. 32, e3945 (2019).

    Article  PubMed  Google Scholar 

  74. Koay, C. G. & Basser, P. J. Analytically exact correction scheme for signal extraction from noisy magnitude MR signals. J. Magn. Reson. 179, 317–322 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Manjón, J. V. et al. Diffusion weighted image denoising using overcomplete local PCA. PLoS ONE 8, e73021 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Tournier, J. -D., Calamante, F. & Connelly, A. Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. NeuroImage 35, 1459–1472 (2007).

    Article  PubMed  Google Scholar 

  77. Jeurissen, B., Tournier, J. -D., Dhollander, T., Connelly, A. & Sijbers, J. Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. NeuroImage 103, 411–426 (2014).

    Article  PubMed  Google Scholar 

  78. Karayumak, S. C., Özarslan, E. & Unal, G. Asymmetric orientation distribution functions (AODFs) revealing intravoxel geometry in diffusion MRI. Magn. Reson. Imaging 49, 145–158 (2018).

    Article  Google Scholar 

  79. Basser, P. J., Pajevic, S., Pierpaoli, C., Duda, J. & Aldroubi, A. In vivo fiber tractography using DT-MRI data. Magn. Reson. Med. 44, 625–632 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Tournier, J.-D., Calamante, F. & Connelly, A. Improved probabilistic streamlines tractography by 2nd order integration over fibre orientation distributions. In Proc. 18th Annual Meeting of the International Society for Magnetic Resonance in Medicine 1670 (2010).

  81. Tournier, J., Calamante, F. & Connelly, A. MRtrix: diffusion tractography in crossing fiber regions. Int. J. Imaging Syst. Technol. 22, 53–66 (2012).

    Article  Google Scholar 

  82. Raffelt, D., Tournier, J., Crozier, S., Connelly, A. & Salvado, O. Reorientation of fiber orientation distributions using apodized point spread functions. Magn. Reson. Med. 67, 844–855 (2012).

    Article  PubMed  Google Scholar 

  83. Fonck, E. et al. Effect of aging on elastin functionality in human cerebral arteries. Stroke 40, 2552–2556 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Püspöki, Z., Storath, M., Sage, D. & Unser, M. in Focus on Bio-Image Informatics (eds De Vos, W. H. et al.) 69–93 (Springer, 2016).

  85. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Rezakhaniha, R. et al. Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy. Biomech. Model. Mechanobiol. 11, 461–473 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Zhang, Y. & Xiao, Y. Euyz/CABLE: CABLE v.1.0. Zenodo https://doi.org/10.5281/zenodo.17092643 (2025).

  88. Zhang, Y. et al. Brain CABLE analysis. protocols.io https://doi.org/10.17504/protocols.io.5qpvoo5zdv4o (2025).

Download references

Acknowledgements

We thank X. Qi, C. Liu, S. Li, X. Zou, R. Li, Y. Cai and F. Wu for experimental support; L. Ding, Z. Yi and H. Xia for software and computing resources maintenance; C. Xu, G. Wang and J. Xi for help with viral injections; and S. Chen for valuable suggestions on the paper. We thank the Single Cell Typing Platform and Non-human Primate Anatomical Research Platform of CEBSIT for assisting with marmoset transcriptomic data collection; thank the 9.4T MRI core facility of CEBSIT for assistance in the MRI imaging; and thank the Marmoset Animal Facility of CEBSIT for animal care. This work was supported by the STI 2030-Major Projects (2022ZD0205200 to F.X. and Y.X.; 2025ZD0219300 and 2022ZD0205000 to C.L.; 2021ZD0200104 to P.-M.L.), Shenzhen Science and Technology Program (RCYX20210706092100003 to F.X.), Shenzhen Medical Research Funds grant (A2303005 to F.X.), National Natural Science Foundation of China grants (32171088 and 32427802 to C.L.; T2522040 to F.X.), a Youth Innovation Promotion Association CAS grant (2022367 to F.X.) and the National Key R&D Program of China (2022YEF0203200 to G.-Q.B.).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: F.X., C.L. and Y.X.; Formal analysis: Y.Z. and T.S.; Funding acquisition: F.X., C.L., Y.X., P.-M.L. and G.-Q.B.; Investigation: Y.S. (acquisition of VISoR data of macaque and human brains), Y.Y. (acquisition of VISoR data of marmoset brains), Xiaowei Hu (immunostaining and mouse HIE data acquisition), L.T., C.J. (mouse HIE model), C.-Y.Y. (prototype of structure tensor analysis), H.W. (human brain sample preparation), X.W., H.L. and H.Y. (viral labeling of marmoset brain); Methodology: Y.Z., T.S. and C.-Y.Y.; Project administration: F.X. and C.L.; Resources: J.-N.Z., H.H., X.W. (human brain samples) and Xintian Hu (macaque brains); Software: C.-Y.Y., R.Z., W.W., Y.L. and P.Z.; Supervision: F.X., C.L., Y.X. and G.-Q.B.; Writing—original draft: C.L., F.X., Y.Z. and T.S.; Writing—review and editing: C.L., F.X., Y.Z., T.S., Y.X. and M.-M.P.

Corresponding authors

Correspondence to Guo-Qiang Bi  (毕国强), Yanyang Xiao  (肖彦洋), Cirong Liu  (刘赐融) or Fang Xu  (徐放).

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Methods thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available. Primary Handling Editor: Nina Vogt, in collaboration with the Nature Methods team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 ODF calculation with CABLE analysis.

CABLE extracts local image gradients from each pixel in the cytoarchitectonic image to construct the directional scattering density function (DSDF). Gradients within a local analysis window (illustrated by a grid cell) are aggregated into a single DSDF voxel. Spherical deconvolution is then applied to the DSDF to generate orientation distribution functions (ODF), which recover underlying fiber orientations in both unidirectional (for example, corpus callosum, cc) and crossing (for example, cingulum, cg) fiber regions.

Extended Data Fig. 2 Comparison of orientation detection methods based on image gradient or structure tensor in the fiber-crossing regions.

(a) A raw Nissl-stained section of a macaque hemibrain. (b-c) Visualization of cODFs in the area within the white rectangle in (a) by our gradient-based method (b) and the structure tensor (ST)-based method (c), showing similar results at the macroscopic scale. (d-f) Magnified views of the regions indicated in (b-c) and their corresponding raw images. The left column presents raw image within corpus callosum (d) and corona radiata (e-f). The middle and right columns show the gradient-ODFs (d’-f’) and ST-ODFs (d”-f”). Each ST-ODF gathered ST orientations in a region of 80×80×80 µm3, where each ST was calculated from a nonoverlapping 16×16×16 µm3 window.

Extended Data Fig. 3 Anisotropic cellular shape substantially contributes to cytoarchitectonic orientation estimation.

(a) An image of the marmoset corpus callosum, with a bar plot showing the distribution of cellular anisotropy within a representative local region. Fractional anisotropy was computed from ellipsoid-fitted cell masks. The inset illustrates the gradient distribution for a cell with FA = 0.6 (90th percentile), and that after rotated by the half-maximum width ( ~ 26°, in blue). (b) Binary mask of segmented cells in the original image. (c) Simulated data in which each segmented cell is replaced by a sphere of equal volume, keeping their spatial positions unchanged. (d) Comparison of orientation coherence between (b) and (c), assessed via structure tensor analysis. ***, P < 0.001, n = 98,587 sliding analysis windows, two-sided Mann-Whitney U test, p < 1e-300.

Extended Data Fig. 4 CABLE analysis of the thalamus and cortex of a newborn marmoset.

(a) A coronal-section view of cODFs derived from a newborn marmoset. (b) Enlarged coronal view of the thalami (upper left) with CABLE tractography (lower left) and the corresponding sagittal view (right). The dashed lines indicate the direction of the left-right fibers of the thalamus. (c-e) Enlarged views of several cortical areas. Dashed lines indicate the border of the meninges and cortical layer I.

Extended Data Fig. 5 Orientation coherence analysis and neuron subtype classification on the cortical area.

(a) Illustration showing the color mapping of relative radial position (laminar depth) and tangential position in the cortex region of T472 marmoset brain section. (b) 3D lines depicting the median orientations of neurons and glial cells changing similarly along the tangential axis. Each position on the 3D line represents a tangential position along the ascending tangential axis and the cellular orientation at that position, which is indicated by its projection to the bottom circle. (c) Violin plot showing significant high orientation coherence in both cortical neurons (NEU) and glial cells (GLIA), while the cortical neurons have a higher orientation coherence. n = 31,980 (NEU), n = 13,503 (GLIA). *** indicates P < 0.001 with two-sided Mann–Whitney U-test between NEU and GLIA, and between NEU/GLIA groups and the simulation group (random), n = 31,980 [NEU], 13,503 [GLIA], 254,530 [random]; P = 6.16e-178 [NEU-GLIA], less than 1.00e-300 [NEU-random], 2.22e-263 [GLIA-random]. The embedded box plots in violin plots indicate the median (central white horizontal line) and the interquartile range (25th and 75th percentiles, box edges). Whiskers, minima and maxima outside this range are not shown. (d) UMAP scatter plot of cortical neuron subtypes. The single-nucleus RNA sequencing dataset was used for the annotation of subtypes on spatial transcriptome sections. Each neuron subtype is colored according to its preferred laminar depth distribution as indicated in (g). (e) Mapping of neuron subtypes (01_I to 18_E) on spatial transcriptome slices T473 and T558. (f) Dot plot showing marker gene expression profiles of each neuron subtype (numbered from 01 to 18, and E for excitatory neurons and I for inhibitory neurons). (g) Relative radial position distribution (layer 1 to layer 6, L1-L6) of all neuron subtypes.

Extended Data Fig. 6 Orientation coherence analysis in sections T473 and T558.

(a) Contours of manually segmented cortex and white matter. (b) Violin plots showing high orientation coherence of all four glial cell types in segmented white matter regions. (c) Violin plots showing high orientation coherence of both white matter cells and cortical cells, while the cortical cytoarchitectonic orientation coherence is lower than the white matter (WM). (d) Violin plots showing high orientation coherence in both cortical neurons (NEU) and glial cells (GLIA), while the cortical neurons have a higher orientation coherence than glial cells. (e) Distribution of orientation coherence for neuron subtypes with null model comparisons, calculated from section T473 and T558. In (b-e), * P < 0.05, ** P < 0.01 and *** P < 0.001 (two-sided Mann–Whitney U-test). For the section T473, n = 4,966 [OLI], 134 [AST], 142 [OPC], 173 [MIC], 10,472 [WM], 103,070 [Cortex], 32,747 [NEU], 13,286 [GLIA], 684 [01_I], 766 [05_I], 870 [03_I], 137 [02_I], 412 [07_I], 1,751 [17_E], 704 [13_E], 1,723 [06_I], 875 [18_E], 12,499 [04_E], 587 [11_E], 2,011 [16_E], 561 [14_E], 1,745 [09_I], 4,995 [10_E], 57 [08_I], 2,035 [12_E], 321 [15_I], 238,500 [random]; P values (vs. random unless noted): <1.0e-300 [OLI], 2.6e-23 [AST], 2.9e-22 [OPC], 2.6e-21 [MIC], 5.8e-01 [OLI-AST], 3.0e-01 [OLI-OPC], 8.3e-03 [OLI-MIC], 6.6e-01 [AST-OPC], 1.5e-01 [AST-MIC], 3.3e-01 [OPC-MIC], 3.2e-242 [WM-Cortex], less than 1.0e-300 [WM], less than 1.0e-300 [Cortex], 2.9e-167 [NEU-GLIA], <1.0e-300 [NEU], 1.8e-250 [GLIA], 3.3e-69 [01_I], 2.6e-54 [05_I], 4.4e-84 [03_I], 4.8e-15 [02_I], 3.4e-40 [07_I], 1.0e-138 [17_E], 7.5e-60 [13_E], 4.3e-133 [06_I], 8.1e-67 [18_E], <1.0e-300 [04_E], 3.0e-41 [11_E], 1.6e-144 [16_E], 6.7e-36 [14_E], 7.4e-105 [09_I], 5.4e-282 [10_E], 1.5e-03 [08_I], 4.9e-110 [12_E], 5.4e-19 [15_I]. For the section T558, n = 5,490 [OLI], 224 [AST], 265 [OPC], 208 [MIC], 13,120 [WM], 182,721 [Cortex], 61,452 [NEU], 19,011 [GLIA], 955 [01_I], 1,299 [03_I], 23,175 [04_E], 224 [02_I], 1,262 [11_E], 3,276 [09_I], 3,036 [06_I], 1,249 [05_I], 724 [07_I], 3,596 [17_E], 1,652 [14_E], 2,195 [18_E], 3,512 [16_E], 3,986 [12_E], 592 [15_I], 1,351 [13_E], 9,048 [10_E], 265 [08_I], 480,791 [random]; p values (vs. random unless noted): <1.0e-300 [OLI], 8.3e-54 [AST], 1.4e-66 [OPC], 1.0e-44 [MIC], 4.1e-02 [OLI-AST], 9.3e-02 [OLI-OPC], 5.2e-01 [OLI-MIC], 7.3e-01 [AST-OPC], 5.0e-02 [AST-MIC], 9.0e-02 [OPC-MIC], <1.0e-300 [WM-Cortex], less than 1.0e-300 [WM], less than 1.0e-300 [Cortex], 7.4e-145 [NEU-GLIA], <1.0e-300 [NEU], 1.2e-257 [GLIA], 3.5e-72 [01_I], 4.5e-106 [03_I], <1.0e-300 [04_E], 1.3e-16 [02_I], 8.6e-57 [11_E], 1.5e-140 [09_I], 5.2e-127 [06_I], 3.2e-48 [05_I], 5.2e-36 [07_I], 1.9e-143 [17_E], 2.5e-58 [14_E], 7.0e-85 [18_E], 4.5e-121 [16_E], 1.9e-124 [12_E], 3.6e-19 [15_I], 4.5e-31 [13_E], 4.9e-178 [10_E], 5.2e-09 [08_I]. The embedded box plots in violin plots indicate the median (central white horizontal line) and the interquartile range (25th and 75th percentiles, box edges). Whiskers, minima and maxima outside this range are not shown.

Extended Data Fig. 7 Various types of glial cells exhibit coherent alignment with cytoarchitectonic orientation.

(a) First row: Co-staining of ASPA (green; mature oligodendrocyte marker) and SOX10 (magenta; marker of all oligodendrocyte lineage cells) in the mouse corpus callosum (CC); Second row: ASPA/SOX10 images merged with virus-labeled axons in cyan. Cells positive for SOX10 but negative for ASPA (magenta only) are presumptive OPCs. Third row: Co-staining of NG2 (magenta; direct OPC marker) and DAPI (white) in the mouse fimbria. Magenta and green dotted lines indicate the local orientations of OPCs (SOX10⁺/ASPA⁻ or NG2⁺) and overall cell populations (SOX10⁺ or DAPI⁺), respectively. Fourth row: Quantification of orientation coherence in the CC and fimbria shows no significant difference between OPCs and mature oligodendrocytes in the CC (P = 0.54, n = 20), or between OPCs and DAPI-labeled nuclei in the fimbria (P = 0.66, n = 25). (b–c) Co-staining of GFAP (astrocytes), Nissl, and Lectin (vasculature) in the mouse CC (b) and fimbria (c). Red line segments indicate local orientations derived from astrocytes (AST), Nissl (Overall), and vasculature (VAS). No significant difference was observed between AST and Nissl in either region (P = 0.43, n = 117 for CC; P = 0.38, n = 30 for fimbria). AST and VAS orientations differed slightly in the CC (P = 0.04, n = 117) and fimbria (P = 0.03, n = 30). VAS and Nissl orientations were significantly different in both CC (P = 0.002, n = 117) and fimbria (P = 0.003, n = 30). (d) Co-staining of IBA1 (microglia) and Nissl in the mouse CC. Red line segments indicate local orientations of microglia (MIC) and Nissl-inferred overall orientation. No significant difference was found between MIC and Nissl orientations (P = 0.55, n = 64). Two-sided Mann–Whitney U tests were used for all statistical comparisons. Violin plots show the distribution of orientation values using kernel density estimation. The embedded box plots indicate the median (central line), the interquartile range (25th and 75th percentiles; box edges), and the whiskers represent data within 1.5×IQR from the quartiles. Minima and maxima outside this range are not shown.

Extended Data Fig. 8 Comparison of CABLE with other methods for macaque brain mapping.

(a) Comparative visualization of occipital white matter fiber architecture using CABLE, PLI, and dMRI techniques. CABLE (left) delineates distinct white matter structures (medial to lateral): stratum calcarinum (strk), cingulum (cg), inferior forceps (if), forceps major (mf), sagittal stratum (ss), and vertical occipital fasciculus (vof). In dMRI images, the gap between strk and cg is hardly discernible. (b-c) Depiction of the ventral hippocampal commissure (vhc; red box) and medial longitudinal striae (ls; green box) by CABLE (b) and PLI (c). (d) Representative images of CABLE and dMRI ODFs in the macaque cerebellum. The lower row presents magnified views of the areas outlined in the upper row.

Extended Data Fig. 9 CABLE-derived tractograms in the rhesus monkey and human brains.

(a) Coronal view of a CABLE-derived tractogram in the macaque brain. (b) Tractogram of another coronal section of macaque brain, highlighting the corona radiata (middle) and internal capsule (lower). (c) Sagittal view of DAPI-stained macaque brainstem (left) with the box region enlarged (middle). Corresponding CABLE-derived tractogram (right) illustrates the interweaving between the pyramidal tract (PT) and the preculminate fissure (pcf). (d) Coronal view of an adult human brain tissue block from epilepsy surgery (left) and its corresponding CABLE-derived tractogram (right).

Supplementary information

Supplementary Information

Supplementary Note 1, Tables 1–3 and Figs. 1–16

Reporting Summary

Peer Review File

Supplementary Video 1

Whole-brain imaging and reconstruction of a macaque brain reveals the structured cytoarchitectonic organization.

Supplementary Video 2

Comparison between axonal and cytoarchitectonic orientation in a marmoset brain. Multichannel imaging provides side-by-side comparison of the cytoarchitectonic organization (green, labeled with DAPI) and the axon traces (white, sparsely labeled with whole-brain viral tracing). The whole marmoset brain was imaged and reconstructed with the SMART pipeline. The corpus callosum region is enlarged to show high-resolution images of axons and adjacent cells oriented and arranged in the same direction as the axons.

Supplementary Video 3

Comparison of axon tracts and CABLE-derived tractogram in the marmoset brain.

Supplementary Video 4

Brain-wide CABLE-based tractography of a macaque brain.

Supplementary Video 5

Axonal fiber tracing showing turns of the cortical pyramidal neurons.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Song, T., Yang, CY. et al. Whole-brain reconstruction of fiber tracts based on cytoarchitectonic organization. Nat Methods (2025). https://doi.org/10.1038/s41592-025-02865-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41592-025-02865-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载