+
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A single residue in influenza virus H2 hemagglutinin enhances the breadth of the B cell response elicited by H2 vaccination

Abstract

Conserved epitopes on the influenza hemagglutinin (HA) stem are an attractive target for universal vaccine strategies as they elicit broadly neutralizing antibodies. Such antibody responses to stem-specific epitopes have been extensively characterized for HA subtypes H1 and H5 in humans. H2N2 influenza virus circulated 50 years ago and represents a pandemic threat due to the lack of widespread immunity, but, unlike H1 and H5, the H2 HA stem contains Phe45HA2 predicted to sterically clash with HA stem-binding antibodies characterized to date. To understand the effect of Phe45HA2, we compared the HA stem-specific B cell response in post hoc analyses of two phase 1 clinical trials, one testing vaccination with an H2 ferritin nanoparticle immunogen (NCT03186781) and one with an inactivated H5N1 vaccine (NCT01086657). In H2-naive individuals, the magnitude of the B cell response was equivalent, but H2-elicited HA stem-binding B cells displayed greater cross-reactivity than those elicited by H5. However, in individuals with childhood H2 exposure, H5-elicited HA stem-binding B cells also displayed high cross-reactivity, suggesting recall of memory B cells formed 50 years ago. Overall, we propose that a one-residue difference on an HA immunogen can alter establishment and expansion of broadly neutralizing memory B cells. These data have implications for stem-based universal influenza vaccination strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phe45HA2 is unique in human H2N2 isolates.
Fig. 2: Memory B cells expanded by H2 vaccination have greater breadth.
Fig. 3: Sera from H2-vaccinated individuals show greater breadth of binding.
Fig. 4: VH1-69 usage dominates the HA stem response to H5 and H2 vaccination.
Fig. 5: Structural analysis of recognition by VH1-69-derived antibodies of H2 HA.
Fig. 6: Exposure to H2N2 virus 50 years ago leads to a more broadly reactive memory B cell response to H5 vaccination.

Similar content being viewed by others

Data availability

Cryo-EM maps and fitted coordinates were deposited in the Electron Microscopy Data Bank with accession codes 23098 and 23816 and in the Protein Data Bank with IDs 7L0L and 7MFG. Immunoglobulin sequences are available in GenBank under accession numbers OK669229OK670607. Source data for Figs. 2–6 and Supplementary Figs. 1–4 and 6 are included as supplementary files. Any additional data are available upon reasonable request from the corresponding authors. Source data are provided with this paper.

References

  1. Iuliano, A. D. et al. Estimates of global seasonal influenza-associated respiratory mortality: a modelling study. Lancet 391, 1285–1300 (2018).

    Article  PubMed  Google Scholar 

  2. Ellebedy, A. H. et al. Induction of broadly cross-reactive antibody responses to the influenza HA stem region following H5N1 vaccination in humans. Proc. Natl Acad. Sci. USA 111, 13133–13138 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li, G. M. et al. Pandemic H1N1 influenza vaccine induces a recall response in humans that favors broadly cross-reactive memory B cells. Proc. Natl Acad. Sci. USA 109, 9047–9052 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wrammert, J. et al. Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection. J. Exp. Med. 208, 181–193 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Andrews, S. F. et al. Immune history profoundly affects broadly protective B cell responses to influenza. Sci. Transl. Med. 7, 316ra192 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Andrews, S. F. et al. Preferential induction of cross-group influenza A hemagglutinin stem-specific memory B cells after H7N9 immunization in humans. Sci. Immunol. 2, eaan2676 (2017).

    Article  PubMed  Google Scholar 

  7. Avnir, Y. et al. IGHV1-69 polymorphism modulates anti-influenza antibody repertoires, correlates with IGHV utilization shifts and varies by ethnicity. Sci. Rep. 6, 20842 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cortina-Ceballos, B. et al. Longitudinal analysis of the peripheral B cell repertoire reveals unique effects of immunization with a new influenza virus strain. Genome Med. 7, 124 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wheatley, A. K. et al. H5N1 vaccine-elicited memory B cells are genetically constrained by the IGHV locus in the recognition of a neutralizing epitope in the hemagglutinin stem. J. Immunol. 195, 602–610 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Whittle, J. R. et al. Flow cytometry reveals that H5N1 vaccination elicits cross-reactive stem-directed antibodies from multiple Ig heavy-chain lineages. J. Virol. 88, 4047–4057 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wu, N. C. et al. Different genetic barriers for resistance to HA stem antibodies in influenza H3 and H1 viruses. Science 368, 1335–1340 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Corti, D. et al. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science 333, 850–856 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Dreyfus, C. et al. Highly conserved protective epitopes on influenza B viruses. Science 337, 1343–1348 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Joyce, M. G. et al. Vaccine-induced antibodies that neutralize group 1 and group 2 influenza A viruses. Cell 166, 609–623 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lang, S. et al. Antibody 27F3 broadly targets influenza A group 1 and 2 hemagglutinins through a further variation in VH1-69 antibody orientation on the HA stem. Cell Rep. 20, 2935–2943 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Throsby, M. et al. Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells. PLoS ONE 3, e3942 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ledgerwood, J. E. et al. DNA priming and influenza vaccine immunogenicity: two phase 1 open label randomised clinical trials. Lancet Infect. Dis. 11, 916–924 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wei, C. J. et al. Induction of broadly neutralizing H1N1 influenza antibodies by vaccination. Science 329, 1060–1064 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Ledgerwood, J. E. et al. Prime-boost interval matters: a randomized phase 1 study to identify the minimum interval necessary to observe the H5 DNA influenza vaccine priming effect. J. Infect. Dis. 208, 418–422 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yassine, H. M. et al. Hemagglutinin-stem nanoparticles generate heterosubtypic influenza protection. Nat. Med. 21, 1065–1070 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Corbett, K. S. et al. Design of nanoparticulate group 2 influenza virus hemagglutinin stem antigens that activate unmutated ancestor B cell receptors of broadly neutralizing antibody lineages. MBio 10, e02810–18 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hill, M. O. Diversity and evenness: a unifying notation and its consequences. Ecology 54, 427–432 (1973).

    Article  Google Scholar 

  23. Stern, J. N. et al. B cells populating the multiple sclerosis brain mature in the draining cervical lymph nodes. Sci. Transl. Med. 6, 248ra107 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ekiert, D. C. et al. Antibody recognition of a highly conserved influenza virus epitope. Science 324, 246–251 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lingwood, D. et al. Structural and genetic basis for development of broadly neutralizing influenza antibodies. Nature 489, 566–570 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sui, J. et al. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat. Struct. Mol. Biol. 16, 265–273 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Avnir, Y. et al. Molecular signatures of hemagglutinin stem-directed heterosubtypic human neutralizing antibodies against influenza A viruses. PLoS Pathog. 10, e1004103 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pappas, L. et al. Rapid development of broadly influenza neutralizing antibodies through redundant mutations. Nature 516, 418–422 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Lessler, J. et al. Evidence for antigenic seniority in influenza A (H3N2) antibody responses in southern China. PLoS Pathog. 8, e1002802 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li, Y. et al. Immune history shapes specificity of pandemic H1N1 influenza antibody responses. J. Exp. Med. 210, 1493–1500 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Miller, M. S. et al. Neutralizing antibodies against previously encountered influenza virus strains increase over time: a longitudinal analysis. Sci. Transl. Med. 5, 198ra107 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Carter, D. M. et al. Sequential seasonal H1N1 influenza virus infections protect ferrets against novel 2009 H1N1 influenza virus. J. Virol. 87, 1400–1410 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Linderman, S. L. & Hensley, S. E. Antibodies with ‘original antigenic sin’ properties are valuable components of secondary immune responses to influenza viruses. PLoS Pathog. 12, e1005806 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gostic, K. M., Ambrose, M., Worobey, M. & Lloyd-Smith, J. O. Potent protection against H5N1 and H7N9 influenza via childhood hemagglutinin imprinting. Science 354, 722–726 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tiller, T. et al. Efficient generation of monoclonal antibodies from single human B cells by single cell RT–PCR and expression vector cloning. J. Immunol. Methods 329, 112–124 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Doria-Rose, N. A. et al. New member of the V1V2-directed CAP256-VRC26 lineage that shows increased breadth and exceptional potency. J. Virol. 90, 76–91 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Brochet, X., Lefranc, M. P. & Giudicelli, V. IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis. Nucleic Acids Res. 36, W503–W508 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gupta, N. T. et al. Change-O: a toolkit for analyzing large-scale B cell immunoglobulin repertoire sequencing data. Bioinformatics 31, 3356–3358 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Creanga, A. et al. A comprehensive influenza reporter virus panel for high-throughput deep profiling of neutralizing antibodies. Nat. Commun. 12, 1722 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee, P. S., Zhu, X., Yu, W. & Wilson, I. A. Design and structure of an engineered disulfide-stabilized influenza virus hemagglutinin trimer. J. Virol. 89, 7417–7420 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Suloway, C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151, 41–60 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Voss, N. R., Yoshioka, C. K., Radermacher, M., Potter, C. S. & Carragher, B. DoG Picker and TiltPicker: software tools to facilitate particle selection in single particle electron microscopyand TiltPicker: software tools to facilitate particle selection in single particle electron microscopy. J. Struct. Biol. 166, 205–213 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lander, G. C. et al. Appion: an integrated, database-driven pipeline to facilitate EM image processing. J. Struct. Biol. 166, 95–102 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Xu, R., McBride, R., Paulson, J. C., Basler, C. F. & Wilson, I. A. Structure, receptor binding, and antigenicity of influenza virus hemagglutinins from the 1957 H2N2 pandemic. J. Virol. 84, 1715–1721 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Adams, P. D. et al. Recent developments in the PHENIX software for automated crystallographic structure determination. J. Synchrotron Radiat. 11, 53–55 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Terwilliger, T. C., Ludtke, S. J., Read, R. J., Adams, P. D. & Afonine, P. V. Improvement of cryo-EM maps by density modification. Nat. Methods 17, 923–927 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  52. Davis, I. W., Murray, L. W., Richardson, J. S. & Richardson, D. C. MOLPROBITY: structure validation and all-atom contact analysis for nucleic acids and their complexes. Nucleic Acids Res. 32, W615–W619 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Barad, B. A. et al. EMRinger: side chain-directed model and map validation for 3D cryo-electron microscopy. Nat. Methods 12, 943–946 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Budeus, B., Timm, J. & Hoffmann, D. SeqFeatR for the Discovery of Feature-Sequence Associations. PLoS ONE 11, e0146409 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. Ambrozak for help with flow cytometry sorting. Support for this work was provided by the Intramural Research Programs of the Vaccine Research Center and the Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Some of this work was performed at the Simons Electron Microscopy Center and the National Resource for Automated Molecular Microscopy, located at the New York Structural Biology Center, supported by grants from the Simons Foundation (SF349247) and the National Institute of General Medical Sciences (GM103310), with additional support from NYSTAR and the New York State Assembly Majority. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, S.F.A.; methodology, S.F.A. and A.C.; formal analysis, S.F.A., R.R., C.-H.S. and J.C.B.; investigation, S.F.A., J.E.R., J.G., R.A.G., C.S., F.C., L.Y.C., A.C., D.R.H., A.S.O., A.N. and T.Z.; resources, K.V.H., G.L.C. and J.E.L.; writing—original draft, S.F.A.; writing—review and editing, S.F.A., J.C.B., K.V.H., M.K., J.R.M., P.D.K. and A.B.M.; visualization, S.F.A. and J.G.; supervision, S.F.A., G.L.C., J.R.M., B.S.G., M.K., J.E.L., P.D.K. and A.B.M.; funding acquisition, A.B.M.

Corresponding authors

Correspondence to Sarah F. Andrews or Adrian B. McDermott.

Ethics declarations

Competing interests

J.C.B., B.S.G., J.R.M., M.K. and P.D.K. are named inventors of US patents 9,441,019, 10,137,190 and 10,363,301 on influenza hemagglutinin nanoparticle vaccines and stabilized hemagglutinin stem trimers and of several pending applications on related technologies filed by the Department of Health and Human Services (National Institutes of Health).

Peer review information Nature Medicine thanks the anonymous reviewers for their contribution to the peer review of this work. Alison Farrell was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7 and Supplementary Tables 1 and 2.

Reporting Summary

Supplementary Table 1

Statistical source data for Supplementary Fig. 1.

Supplementary Table 2

Statistical source data for Supplementary Fig. 2.

Supplementary Table 3

Statistical source data for Supplementary Fig. 3.

Supplementary Table 4

Statistical source data for Supplementary Fig. 4.

Supplementary Table 5

Statistical source data for Supplementary Fig. 6.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrews, S.F., Raab, J.E., Gorman, J. et al. A single residue in influenza virus H2 hemagglutinin enhances the breadth of the B cell response elicited by H2 vaccination. Nat Med 28, 373–382 (2022). https://doi.org/10.1038/s41591-021-01636-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41591-021-01636-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载