+
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Repositioning TH cell polarization from single cytokines to complex help

Abstract

When helper T (TH) cell polarization was initially described three decades ago, the TH cell universe grew dramatically. New subsets were described based on their expression of few specific cytokines. Beyond TH1 and TH2 cells, this led to the coining of various TH17 and regulatory (Treg) cell subsets as well as TH22, TH25, follicular helper (TFH), TH3, TH5 and TH9 cells. High-dimensional single-cell analysis revealed that a categorization of TH cells into a single-cytokine-based nomenclature fails to capture the complexity and diversity of TH cells. Similar to the simple nomenclature used to describe innate lymphoid cells (ILCs), we propose that TH cell polarization should be categorized in terms of the help they provide to phagocytes (type 1), to B cells, eosinophils and mast cells (type 2) and to non-immune tissue cells, including the stroma and epithelium (type 3). Studying TH cells based on their helper function and the cells they help, rather than phenotypic features such as individual analyzed cytokines or transcription factors, better captures TH cell plasticity and conversion as well as the breadth of immune responses in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cross-inhibition model.
Fig. 2: Orbital model based on TH cell targets.

Similar content being viewed by others

References

  1. Galli, E. et al. The end of omics? High dimensional single cell analysis in precision medicine. Eur. J. Immunol. 49, 212–220 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Tortola, L. et al. High-dimensional T helper cell profiling reveals a broad diversity of stably committed effector states and uncovers interlineage relationships. Immunity 53, 597–613 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Parish, C. R. & Liew, F. Y. Immune response to chemically modified flagellin: III. Enhanced cell-mediated immunity during high and low zone antibody tolerance to flagellin. J. Exp. Med. 135, 298–311 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bottomly, K., Mathieson, B. J. & Mosier, D. E. Anti-idiotype induced regulation of helper cell function for the response to phosphorylcholine in adult BALB/c mice. J. Exp. Med. 148, 1216–1227 (1978).

    Article  CAS  PubMed  Google Scholar 

  5. Kappler, J. & Marrack, P. The role of H-2-linked genes in helper T-cell function. I. In vitro expression in B cells of immune response genes controlling helper T-cell activity. J. Exp. Med. 146, 1748–1764 (1977).

    Article  PubMed Central  Google Scholar 

  6. Tada, T., Takemori, T., Okumura, K., Nonaka, M. & Tokuhisa, T. Two distinct types of helper T cells involved in the secondary antibody response: independent and synergistic effects of Ia and Ia+ helper T cells. J. Exp. Med. 147, 446–458 (1978).

    Article  Google Scholar 

  7. Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. & Coffman, R. L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357 (1986).

    CAS  PubMed  Google Scholar 

  8. Szabo, S. J. et al. A novel transcription factor, T-bet, directs TH1 lineage commitment. Cell 100, 655–669 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, D. H., Cohn, L., Ray, P., Bottomly, K. & Ray, A. Transcription factor GATA-3 is differentially expressed in murine TH1 and TH2 cells and controls TH2-specific expression of the interleukin-5 gene. J. Biol. Chem. 272, 21597–21603 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Zheng, W. P. & Flavell, R. A. The transcription factor GATA-3 is necessary and sufficient for TH2 cytokine gene expression in CD4 T cells. Cell 89, 587–596 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Gershon, R. K. & Kondo, K. Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology 18, 723–737 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Nishizuka, Y. & Sakakura, T. Thymus and reproduction: sex-linked dysgenesia of the gonad after neonatal thymectomy in mice. Science 166, 753–755 (1969).

    Article  CAS  PubMed  Google Scholar 

  13. Chen, Y., Kuchroo, V. K., Inobe, J. I., Hafler, D. A. & Weiner, H. L. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 265, 1237–1240 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Groux, H. et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389, 737–742 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).

  16. Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Becher, B., Durell, B. G. & Noelle, R. J. Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12. J. Clin. Invest. 110, 493–497 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cua, D. J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744–748 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Murphy, C. A. et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J. Exp. Med. 198, 1951–1957 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Aggarwal, S., Ghilardi, N., Xie, M. H., De Sauvage, F. J. & Gurney, A. L. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J. Biol. Chem. 278, 1910–1914 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Langrish, C. L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233–240 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Harrington, L. E. et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6, 1123–1132 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6, 1133–1141 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Mangan, P. R. et al. Transforming growth factor-β induces development of the TH17 lineage. Nature 441, 231–234 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Ivanov, I. I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Zwicky, P., Unger, S. & Becher, B. Targeting interleukin-17 in chronic inflammatory disease: a clinical perspective. J. Exp. Med. 217, e20191123 (2020).

    Article  PubMed  CAS  Google Scholar 

  29. Borghi, M. et al. Antifungal TH immunity: growing up in family. Front. Immunol. 5, 506 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Bacher, P. et al. Human anti-fungal TH17 immunity and pathology rely on cross-reactivity against Candida albicans. Cell 176, 1340–1355 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Breitfeld, D. et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J. Exp. Med. 192, 1545–1551 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schaerli, P. et al. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J. Exp. Med. 192, 1553–1562 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Johnston, R. J. et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325, 1006–1010 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mitsdoerffer, M. et al. Proinflammatory T helper type 17 cells are effective B-cell helpers. Proc. Natl Acad. Sci. USA 107, 14292–14297 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Olatunde, A. C., Hale, J. S. & Lamb, T. J. Cytokine-skewed TFH cells: functional consequences for B cell help. Trends Immunol. 42, 536–550 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Reinhardt, R. L., Liang, H. E. & Locksley, R. M. Cytokine-secreting follicular T cells shape the antibody repertoire. Nat. Immunol. 10, 385–393 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Crotty, S. Follicular helper CD4 T cells (TFH). Annu. Rev. Immunol. 29, 621–663 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Dardalhon, V. et al. IL-4 inhibits TGF-β-induced Foxp3+ T cells and, together with TGF-β, generates IL-9+IL-10+Foxp3 effector T cells. Nat. Immunol. 9, 1347–1355 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Veldhoen, M. et al. Transforming growth factor-β ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat. Immunol. 9, 1341–1346 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Duhen, T., Geiger, R., Jarrossay, D., Lanzavecchia, A. & Sallusto, F. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat. Immunol. 10, 857–863 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Trifari, S., Kaplan, C. D., Tran, E. H., Crellin, N. K. & Spits, H. Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from TH-17, TH1 and TH2 cells. Nat. Immunol. 10, 864–871 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Eyerich, S. et al. TH22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J. Clin. Invest. 119, 3573–3585 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu, L. et al. A novel IL-25 signaling pathway through STAT5. J. Immunol. 194, 4528–4534 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Cosmi, L. et al. Identification of a novel subset of human circulating memory CD4+ T cells that produce both IL-17A and IL-4. J. Allergy Clin. Immunol. 125, 222–230 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Ghoreschi, K. et al. Generation of pathogenic TH17 cells in the absence of TGF-β signalling. Nature 467, 967–971 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. van Hamburg, J. P. & Tas, S. W. Molecular mechanisms underpinning T helper 17 cell heterogeneity and functions in rheumatoid arthritis. J. Autoimmun. 87, 69–81 (2018).

    Article  PubMed  CAS  Google Scholar 

  47. Zhou, L., Chong, M. M. W. & Littman, D. R. Plasticity of CD4+ T cell lineage differentiation. Immunity 30, 646–655 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Locksley, R. M. Nine lives: plasticity among T helper cell subsets. J. Exp. Med. 206, 1643–1646 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tsuji, M. et al. Preferential generation of follicular B helper T cells from Foxp3+ T cells in gut Peyer’s patches. Science 323, 1488–1492 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Sujino, T. et al. Tissue adaptation of regulatory and intraepithelial CD4+ T cells controls gut inflammation. Science 352, 1581–1586 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rubtsov, Y. P. et al. Stability of the regulatory T cell lineage in vivo. Science 329, 1667–1671 (2010).

    Article  PubMed Central  CAS  Google Scholar 

  52. Avni, O. et al. TH cell differentiation is accompanied by dynamic changes in histone acetylation of cytokine genes. Nat. Immunol. 3, 643–651 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Fields, P. E., Kim, S. T. & Flavell, R. A. Cutting edge: changes in histone acetylation at the IL-4 and IFN-γ loci accompany TH1/TH2 differentiation. J. Immunol. 169, 647–650 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Mukasa, R. et al. Epigenetic instability of cytokine and transcription factor gene loci underlies plasticity of the T helper 17 cell lineage. Immunity 32, 616–627 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kunkl, M., Frascolla, S., Amormino, C., Volpe, E. & Tuosto, L. T helper cells: the modulators of inflammation in multiple sclerosis. Cells 9, 482 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  56. Ando, D. G., Clayton, J., Kono, D., Urban, J. L. & Sercarz, E. E. Encephalitogenic T cells in the B10.PL model of experimental allergic encephalomyelitis (EAE) are of the TH-1 lymphokine subtype. Cell. Immunol. 124, 132–143 (1989).

    Article  CAS  PubMed  Google Scholar 

  57. Voskuhl, R. R. et al. T helper 1 (TH1) functional phenotype of human myelin basic protein-specific T lymphocytes. Autoimmunity 15, 137–143 (1993).

    Article  CAS  PubMed  Google Scholar 

  58. Ferber, I. A. et al. Mice with a disrupted IFN-γ gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). J. Immunol. 156, 5–7 (1996).

  59. Krakowski, M. & Owens, T. Interferon-γ confers resistance to experimental allergic encephalomyelitis. Eur. J. Immunol. 26, 1641–1646 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Komiyama, Y. et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J. Immunol. 177, 566–573 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Haak, S. et al. IL-17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice. J. Clin. Invest. 119, 61–69 (2009).

    CAS  PubMed  Google Scholar 

  62. Kebir, H. et al. Human TH17 lymphocytes promote blood–brain barrier disruption and central nervous system inflammation. Nat. Med. 13, 1173–1175 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kang, Z. et al. Astrocyte-restricted ablation of interleukin-17-induced Act1-mediated signaling ameliorates autoimmune encephalomyelitis. Immunity 32, 414–425 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Regen, T. et al. IL-17 controls central nervous system autoimmunity through the intestinal microbiome. Sci. Immunol. 6, eaaz6563 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Hirota, K. et al. Fate mapping of IL-17-producing T cells in inflammatory responses. Nat. Immunol. 12, 255–263 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Komuczki, J. et al. Fate-mapping of GM-CSF expression identifies a discrete subset of inflammation-driving T helper cells regulated by cytokines IL-23 and IL-1β. Immunity 50, 1289–1304 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. McQualter, J. L. et al. Granulocyte macrophage colony-stimulating factor: a new putative therapeutic target in multiple sclerosis. J. Exp. Med. 194, 873–881 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ponomarev, E. D. et al. GM-CSF production by autoreactive T cells is required for the activation of microglial cells and the onset of experimental autoimmune encephalomyelitis. J. Immunol. 178, 39–48 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Galli, E. et al. GM-CSF and CXCR4 define a T helper cell signature in multiple sclerosis. Nat. Med. 25, 1290–1300 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sheng, W., Png, C. W., Reynolds, J. M. & Zhang, Y. T cell-derived GM-CSF, regulation of expression and function. Immunome Res. 11, https://doi.org/10.4172/1745-7580.1000098 (2015).

  71. Herndler-Brandstetter, D. & Flavell, R. A. Producing GM-CSF: a unique T helper subset? Cell Res. 24, 1379–1380 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sheng, W. et al. STAT5 programs a distinct subset of GM-CSF-producing T helper cells that is essential for autoimmune neuroinflammation. Cell Res. 24, 1387–1402 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Noster, R. et al. IL-17 and GM-CSF expression are antagonistically regulated by human T helper cells. Sci. Transl. Med. 6, 241ra80 (2014).

    Article  PubMed  CAS  Google Scholar 

  74. Murphy, E. et al. Reversibility of T helper 1 and 2 populations is lost after long-term stimulation. J. Exp. Med. 183, 901–913 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. Hegazy, A. N. et al. Interferons direct TH2 cell reprogramming to generate a stable GATA-3+T-bet+ cell subset with combined TH2 and TH1 cell functions. Immunity 32, 116–128 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Lee, Y. K. et al. Late developmental plasticity in the T helper 17 lineage. Immunity 30, 92–107 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Becattini, S. et al. Functional heterogeneity of human memory CD4+ T cell clones primed by pathogens or vaccines. Science 347, 400–406 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. O’Shea, J. & Paul, W. E. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science 327, 1098–1102 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Kiner, E. et al. Gut CD4+ T cell phenotypes are a continuum molded by microbes, not by TH archetypes. Nat. Immunol. 22, 216–228 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Eberl, G. & Pradeu, T. Towards a general theory of immunity? Trends Immunol. 39, 261–263 (2018).

    Article  PubMed  Google Scholar 

  81. Pradeu, T., Jaeger, S. & Vivier, E. The speed of change: towards a discontinuity theory of immunity? Nat. Rev. Immunol. 13, 764–769 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994).

    Article  CAS  PubMed  Google Scholar 

  83. Annunziato, F., Romagnani, C. & Romagnani, S. The 3 major types of innate and adaptive cell-mediated effector immunity. J. Allergy Clin. Immunol. 135, 626–635 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Eberl, G. Immunity by equilibrium. Nat. Rev. Immunol. 16, 524–532 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Spits, H. et al. Innate lymphoid cells—a proposal for uniform nomenclature. Nat. Rev. Immunol. 13, 145–149 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Bradley, L. M., Dalton, D. K. & Croft, M. A direct role for IFN-γ in regulation of TH1 cell development. J. Immunol. 157, 1350–1358 (1996).

    CAS  PubMed  Google Scholar 

  87. Kurtjones, E. A., Hamberg, S., Ohara, J., Paul, W. E. & Abbas, A. K. Heterogeneity of helper/inducer T lymphocytes: I. Lymphokine production and lymphokine responsiveness. J. Exp. Med. 166, 1774–1787 (1987).

    Article  CAS  Google Scholar 

  88. Korn, T. et al. IL-21 initiates an alternative pathway to induce proinflammatory TH17 cells. Nature 448, 448–487 (2007).

    Article  CAS  Google Scholar 

  89. de Veer, M. J. et al. Functional classification of interferon-stimulated genes identified using microarrays. J. Leukoc. Biol. 69, 912–920 (2001).

    PubMed  Google Scholar 

  90. Hertzog, P., Forster, S. & Samarajiwa, S. Systems biology of interferon responses. J. Interferon Cytokine Res. 31, 5–11 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Trost, M. et al. The phagosomal proteome in interferon-γ-activated macrophages. Immunity 30, 143–154 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Yates, R. M., Hermetter, A., Taylor, G. A. & Russell, D. G. Macrophage activation downregulates the degradative capacity of the phagosome. Traffic 8, 241–250 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Ahn, H. J. et al. A mechanism underlying synergy between IL-12 and IFN-γ-inducing factor in enhanced production of IFN-γ. J. Immunol. 159, 2125–2131 (1997).

    CAS  PubMed  Google Scholar 

  94. Kovarik, P. et al. Stress-induced phosphorylation of STAT1 at Ser727 requires p38 mitogen-activated protein kinase whereas IFN-γ uses a different signaling pathway. Proc. Natl Acad. Sci. USA 96, 13956–13961 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Snapper, C. M. et al. Interferon-γ and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science 236, 944–947 (1987).

    Article  CAS  PubMed  Google Scholar 

  96. Tau, G. & Rothman, P. Biologic functions of the IFN-γ receptors. Allergy 54, 1233–1251 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Croxford, A. L. et al. The cytokine GM-CSF drives the inflammatory signature of CCR2+ monocytes and licenses autoimmunity. Immunity 43, 502–514 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. Darrieutort-Laffite, C. et al. IL-1β and TNFα promote monocyte viability through the induction of GM-CSF expression by rheumatoid arthritis synovial fibroblasts. Mediators Inflamm. 2014, 241840 (2014).

  99. Kobayashi, S. D. Spontaneous neutrophil apoptosis and regulation of cell survival by granulocyte macrophage-colony stimulating factor. J. Leukoc. Biol. 78, 1408–1418 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Zhan, Y. et al. The inflammatory cytokine, GM-CSF, alters the developmental outcome of murine dendritic cells. Eur. J. Immunol. 42, 2889–2900 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Barreda, D. R., Hanington, P. C. & Belosevic, M. Regulation of myeloid development and function by colony stimulating factors. Dev. Comp. Immunol. 28, 509–554 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Sun, L. et al. GM-CSF quantity has a selective effect on granulocytic vs. monocytic myeloid development and function. Front. Immunol. 9, 1922 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Guthridge, M. A. et al. Growth factor pleiotropy is controlled by a receptor Tyr/Ser motif that acts as a binary switch. EMBO J. 25, 479–485 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Guthridge, M. A. et al. Mechanism of activation of the GM-CSF, IL-3, and IL-5 family of receptors. Stem Cells 16, 301–313 (1998).

    Article  CAS  PubMed  Google Scholar 

  105. Becher, B., Tugues, S. & Greter, M. GM-CSF: from growth factor to central mediator of tissue inflammation. Immunity 45, 963–973 (2016).

  106. Sanmarco, L. M. et al. Gut-licensed IFNγ+ NK cells drive LAMP1+TRAIL+ anti-inflammatory astrocytes. Nature 590, 473–479 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wheeler, M. A. et al. MAFG-driven astrocytes promote CNS inflammation. Nature 578, 593–599 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mehta, P. et al. Therapeutic blockade of granulocyte macrophage colony-stimulating factor in COVID-19-associated hyperinflammation: challenges and opportunities. Lancet Respir. Med. 8, 822–830 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Crotty, S. A brief history of T cell help to B cells. Nat. Rev. Immunol. 15, 185–189 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Smith, K. M. et al. TH1 and TH2 CD4+ T cells provide help for B cell clonal expansion and antibody synthesis in a similar manner in vivo. J. Immunol. 165, 3136–3144 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Howard, M. et al. Identification of a T cell-derived B cell growth factor distinct from interleukin 2. J. Exp. Med. 155, 914–923 (1982).

    Article  CAS  PubMed  Google Scholar 

  112. Kopf, M. et al. Immune responses of IL‐4, IL‐5, IL‐6 deficient mice. Immunol. Rev. 148, 45–69 (1995).

    Article  CAS  PubMed  Google Scholar 

  113. Eisenbarth, S. C. et al. CD4+ T cells that help B cells—a proposal for uniform nomenclature. Trends Immunol. 42, 658–669 (2021).

  114. Koyasu, S. & Moro, K. Type 2 innate immune responses and the natural helper cell. Immunology 132, 475–481 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Shinkai, K., Mohrs, M. & Locksley, R. M. Helper T cells regulate type-2 innate immunity in vivo. Nature 420, 825–829 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Yang, D. et al. Eosinophil-derived neurotoxin acts as an alarmin to activate the TLR2–MyD88 signal pathway in dendritic cells and enhances TH2 immune responses. J. Exp. Med. 205, 79–90 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gasteiger, G., Fan, X., Dikiy, S., Lee, S. Y. & Rudensky, A. Y. Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. Science 350, 981–985 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Halim, T. Y. F. et al. Group 2 innate lymphoid cells license dendritic cells to potentiate memory TH2 cell responses. Nat. Immunol. 17, 57–64 (2016).

    Article  CAS  PubMed  Google Scholar 

  119. Halim, T. Y. F. et al. Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation. Immunity 40, 425–435 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Fort, M. M. et al. IL-25 induces IL-4, IL-5, and IL-13 and TH2-associated pathologies in vivo. Immunity 15, 985–995 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Liu, Y., Shao, Z., Shangguan, G., Bie, Q. & Zhang, B. Biological properties and the role of IL-25 in disease pathogenesis. J. Immunol. Res. 2018, 6519465 (2018).

  122. Moro, K. et al. Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. Nature 463, 540–544 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Neill, D. R. et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464, 1367–1370 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Price, A. E. et al. Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc. Natl Acad. Sci. USA 107, 11489–11494 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Renauld, J. C., Houssiau, F., Uyttenhove, C., Vink, A. & Van Snick, J. Interleukin-9: a T-cell growth factor with a potential oncogenic activity. Cancer Invest. 11, 635–640 (1993).

    Article  CAS  PubMed  Google Scholar 

  126. Townsend, M. J. et al. IL-9-deficient mice establish fundamental roles for IL-9 in pulmonary mastocytosis and goblet cell hyperplasia but not T cell development. Immunity 13, 573–583 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Noelle, R. J. & Nowak, E. C. Cellular sources and immune functions of interleukin-9. Nat. Rev. Immunol. 10, 683–687 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. Conti, H. R. et al. TH17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J. Exp. Med. 206, 299–311 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. O’Connor, W. et al. A protective function for interleukin 17A in T cell-mediated intestinal inflammation. Nat. Immunol. 10, 603–609 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Sonnenberg, G. F. et al. Pathological versus protective functions of IL-22 in airway inflammation are regulated by IL-17A. J. Exp. Med. 207, 1293–1305 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Croxford, A. L. et al. IL-6 regulates neutrophil microabscess formation in IL-17A-driven psoriasiform lesions. J. Invest. Dermatol. 134, 728–735 (2014).

    Article  CAS  PubMed  Google Scholar 

  132. Perera, G. K., Di Meglio, P. & Nestle, F. O. Psoriasis. Annu. Rev. Pathol. 7, 385–422 (2012).

    Article  CAS  PubMed  Google Scholar 

  133. Kashem, S. W. et al. Nociceptive sensory fibers drive interleukin-23 production from CD301b+ dermal dendritic cells and drive protective cutaneous immunity. Immunity 43, 515–526 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Riol-Blanco, L. et al. Nociceptive sensory neurons drive interleukin-23-mediated psoriasiform skin inflammation. Nature 510, 157–161 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Rankin, L. C. & Artis, D. Beyond host defense: emerging functions of the immune system in regulating complex tissue physiology. Cell 173, 554–567 (2018).

    Article  CAS  PubMed  Google Scholar 

  136. Sparber, F. & Leibundgut-Landmann, S. Interleukin-17 in antifungal immunity. Pathogens 8, 54 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  137. Plank, M. W. et al. TH22 cells form a distinct TH lineage from TH17 cells in vitro with unique transcriptional properties and Tbet-dependent TH1 plasticity. J. Immunol. 198, 2182–2190 (2017).

    Article  CAS  PubMed  Google Scholar 

  138. Kubick, N. et al. Interleukins and interleukin receptors evolutionary history and origin in relation to CD4+ T cell evolution. Genes 12, 813 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank F. Sallusto and S. Sakaguchi for helpful comments on the manuscript. A.S.D. is supported by the Agence Nationale de la Recherche (ANR FoxoTic), the ARSEP foundation (ARSEP R19191BB) and the FRM (R20097BB); M.I. is supported by the European Research Council (ERC) Consolidator Grant 725038, the ERC Proof of Concept Grant 957502, the Italian Association for Cancer Research grants 19891 and 22737, the Italian Ministry of Health grants RF-2018-12365801 and COVID-2020-12371617, the Lombardy Foundation for Biomedical Research grant 2015-0010, the European Molecular Biology Organization Young Investigator Program and funded research agreements from Gilead Sciences, Takis Biotech, Toscana Life Sciences and Asher Bio. F.J.Q. is supported by NS102807, ES02530, ES029136 and AI126880 from the NIH; RG4111A1 from the National Multiple Sclerosis Society; and PA-1604-08459 from the International Progressive MS Alliance. F.G. is supported by the EMBO YIP, a BMRC Central Research Fund (UIBR) award and a Singapore NRF Senior Investigatorship (NRFI2017-02); TK is supported by the Deutsche Forschungsgemeinschaft (SFB1054, TRR128, TRR274, EXC 2145 (ID 390857198)) and the ERC (CoG647215); A.W. is supported by the Deutsche Forschungsgemeinschaft (TRR128, TRR156, CRC1292 and a Reinhard Koselleck prize); B.B. is supported by the Swiss National Science Foundation (733 310030_170320, 1030 310030_188450 and CRSII5_183478 to B.B.), H2020 Projects (826121, 847782) and the ERC (AdG 882424).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas Korn or Burkhard Becher.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Immunology thanks R. Reinhardt and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Zoltan Fehervari was the primary editor(s) on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuzlak, S., Dejean, A.S., Iannacone, M. et al. Repositioning TH cell polarization from single cytokines to complex help. Nat Immunol 22, 1210–1217 (2021). https://doi.org/10.1038/s41590-021-01009-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41590-021-01009-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载