+
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Non-CG DNA methylation in animal genomes

Abstract

Cytosine DNA methylation is widespread in animal genomes and occurs predominantly at CG dinucleotides (mCG). While the roles of mCG, such as in genomic imprinting and genome stability, are well established, non-CG DNA methylation (mCH) remains poorly understood. In most vertebrate tissues, roughly 80% of CGs are methylated, whereas mCH levels are generally low, typically ranging from 1% to 3%. In vertebrates, mCH is most prevalent in neural tissue, oocytes and embryonic stem cells and has been linked to neurodevelopmental disorders. Moreover, mCH appears to have a conserved role in regulating vertebrate neural genomes, and recent studies suggest that it has functions in the embryogenesis of teleost fish. Overall, mCH represents an intriguing emerging aspect of gene regulation with potential implications for cellular identity, repeat silencing and neural function. In this Review, we provide a critical overview of the patterning, mechanisms and functional implications of mCH in animals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of mCH deposition and genomic mCH content across diverse cell types.
Fig. 2: Chromatin context and developmental dynamics of mCH in vertebrates.
Fig. 3: Challenges and pitfalls in mCH detection and quantification.
Fig. 4: Potential mechanisms of mCH deposition.

Similar content being viewed by others

References

  1. Schubeler, D. Function and information content of DNA methylation. Nature 517, 321–326 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Jurkowska, R. Z., Jurkowski, T. P. & Jeltsch, A. Structure and function of mammalian DNA methyltransferases. ChemBioChem 12, 206–222 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Bogdanovic, O. & Veenstra, G. J. DNA methylation and methyl-CpG binding proteins: developmental requirements and function. Chromosoma 118, 549–565 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yin, Y. et al. Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science 356, eaaj2239 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ross, S. E. & Bogdanovic, O. TET enzymes, DNA demethylation and pluripotency. Biochem. Soc. Trans. 47, 875–885 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Pastor, W. A., Aravind, L. & Rao, A. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat. Rev. Mol. Cell Biol. 14, 341–356 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kohli, R. M. & Zhang, Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502, 472–479 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li, E., Bestor, T. H. & Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Xu, G. L. et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402, 187–191 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Hendrich, B., Guy, J., Ramsahoye, B., Wilson, V. A. & Bird, A. Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development. Genes Dev. 15, 710–723 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Guy, J., Hendrich, B., Holmes, M., Martin, J. E. & Bird, A. A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat. Genet. 27, 322–326 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Dai, H. Q. et al. TET-mediated DNA demethylation controls gastrulation by regulating Lefty–Nodal signalling. Nature 538, 528–532 (2016).

    Article  PubMed  Google Scholar 

  13. Bogdanovic, O. et al. Active DNA demethylation at enhancers during the vertebrate phylotypic period. Nat. Genet. 48, 417–26 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li, C. et al. Overlapping requirements for Tet2 and Tet3 in normal development and hematopoietic stem cell emergence. Cell Rep. 12, 1133–1143 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Robertson, K. D. DNA methylation, methyltransferases, and cancer. Oncogene 20, 3139–3155 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Nishiyama, A. & Nakanishi, M. Navigating the DNA methylation landscape of cancer. Trends Genet. 37, 1012–1027 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Reichard, J. & Zimmer-Bensch, G. The epigenome in neurodevelopmental disorders. Front. Neurosci. 15, 776809 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ciptasari, U. & van Bokhoven, H. The phenomenal epigenome in neurodevelopmental disorders. Hum. Mol. Genet. 29, R42–R50 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ballestar, E., Sawalha, A. H. & Lu, Q. Clinical value of DNA methylation markers in autoimmune rheumatic diseases. Nat. Rev. Rheumatol. 16, 514–524 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mazzone, R. et al. The emerging role of epigenetics in human autoimmune disorders. Clin. Epigenetics 11, 34 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. de Mendoza, A., Lister, R. & Bogdanovic, O. Evolution of DNA methylome diversity in eukaryotes. J. Mol. Biol. 432, 1687–1705 (2019).

    Article  PubMed  Google Scholar 

  24. Zhang, H., Lang, Z. & Zhu, J. K. Dynamics and function of DNA methylation in plants. Nat. Rev. Mol. Cell Biol. 19, 489–506 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Kumar, S. & Mohapatra, T. Dynamics of DNA methylation and its functions in plant growth and development. Front. Plant Sci. 12, 596236 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Salomon, R. & Kaye, A. M. Methylation of mouse DNA in vivo: di- and tripyrimidine sequences containing 5-methylcytosine. Biochim. Biophys. Acta 204, 340–351 (1970).

    Article  CAS  PubMed  Google Scholar 

  27. Grafstrom, R. H., Yuan, R. & Hamilton, D. L. The characteristics of DNA methylation in an in vitro DNA synthesizing system from mouse fibroblasts. Nucleic Acids Res. 13, 2827–2842 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Patil, V., Ward, R. L. & Hesson, L. B. The evidence for functional non-CpG methylation in mammalian cells. Epigenetics 9, 823–828 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ziller, M. J. et al. Genomic distribution and inter-sample variation of non-CpG methylation across human cell types. PLoS Genet. 7, e1002389 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cokus, S. J. et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452, 215–219 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lister, R. et al. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133, 523–536 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315–322 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shirane, K. et al. Mouse oocyte methylomes at base resolution reveal genome-wide accumulation of non-CpG methylation and role of DNA methyltransferases. PLoS Genet. 9, e1003439 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kubo, N. et al. DNA methylation and gene expression dynamics during spermatogonial stem cell differentiation in the early postnatal mouse testis. BMC Genomics 16, 624 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lister, R. et al. Global epigenomic reconfiguration during mammalian brain development. Science 341, 1237905 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  36. De Mendoza, A. et al. The emergence of the brain non-CpG methylation system in vertebrates. Nat. Ecol. Evol. 5, 369–378 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ross, S. E., Angeloni, A., Geng, F. S., de Mendoza, A. & Bogdanovic, O. Developmental remodelling of non-CG methylation at satellite DNA repeats. Nucleic Acids Res. 48, 12675–12688 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ross, S. E. et al. Evolutionary conservation of embryonic DNA methylome remodelling in distantly related teleost species. Nucleic Acids Res. 51, 9658–9671 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bonasio, R. et al. Genome-wide and caste-specific DNA methylomes of the ants Camponotus floridanus and Harpegnathos saltator. Curr. Biol. 22, 1755–1764 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Klughammer, J. et al. Comparative analysis of genome-scale, base-resolution DNA methylation profiles across 580 animal species. Nat. Commun. 14, 232 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ross, S. E., Hesselson, D. & Bogdanovic, O. Developmental accumulation of gene body and transposon non-CpG methylation in the zebrafish brain. Front. Cell Dev. Biol. 9, 643603 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Fu, Y., Timp, W. & Sedlazeck, F. J. Computational analysis of DNA methylation from long-read sequencing. Nat. Rev. Genet. 26, 620–634 (2025).

    Article  PubMed  Google Scholar 

  43. Liu, T. & Conesa, A. Profiling the epigenome using long-read sequencing. Nat. Genet. 57, 27–41 (2025).

    Article  CAS  PubMed  Google Scholar 

  44. Schultz, M. D. et al. Human body epigenome maps reveal noncanonical DNA methylation variation. Nature 523, 212–216 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. He, Y. & Ecker, J. R. Non-CG methylation in the human genome. Annu Rev. Genomics Hum. Genet. 16, 55–77 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tan, H. K. et al. DNMT3B shapes the mCA landscape and regulates mCG for promoter bivalency in human embryonic stem cells. Nucleic Acids Res. 47, 7460–7475 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lister, R. et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471, 68–73 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Kim, K. et al. Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells. Nat. Biotechnol. 29, 1117–1119 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ohi, Y. et al. Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nat. Cell Biol. 13, 541–549 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yamanaka, S. & Blau, H. M. Nuclear reprogramming to a pluripotent state by three approaches. Nature 465, 704–712 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu, X. et al. Comprehensive characterization of distinct states of human naive pluripotency generated by reprogramming. Nat. Methods 14, 1055–1062 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Giulitti, S. et al. Direct generation of human naive induced pluripotent stem cells from somatic cells in microfluidics. Nat. Cell Biol. 21, 275–286 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Pastor, W. A. et al. Naive human pluripotent cells feature a methylation landscape devoid of blastocyst or germline memory. Cell Stem Cell 18, 323–329 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang, Y. et al. Unique molecular events during reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs) at naive state. eLife 7, e29518 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Buckberry, S. et al. Transient naive reprogramming corrects hiPS cells functionally and epigenetically. Nature 620, 863–872 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Guo, H. et al. The DNA methylation landscape of human early embryos. Nature 511, 606–610 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Wang, L. et al. Programming and inheritance of parental DNA methylomes in mammals. Cell 157, 979–991 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Arand, J. et al. In vivo control of CpG and non-CpG DNA methylation by DNA methyltransferases. PLoS Genet. 8, e1002750 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Butcher, L. M. et al. Non-CG DNA methylation is a biomarker for assessing endodermal differentiation capacity in pluripotent stem cells. Nat. Commun. 7, 10458 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Joe, S. & Nam, H. Prediction model construction of mouse stem cell pluripotency using CpG and non-CpG DNA methylation markers. BMC Bioinformatics 21, 175 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ichiyanagi, T., Ichiyanagi, K., Miyake, M. & Sasaki, H. Accumulation and loss of asymmetric non-CpG methylation during male germ-cell development. Nucleic Acids Res. 41, 738–745 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Kobayashi, H. et al. High-resolution DNA methylome analysis of primordial germ cells identifies gender-specific reprogramming in mice. Genome Res. 23, 616–627 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tomizawa, S. et al. Dynamic stage-specific changes in imprinted differentially methylated regions during early mammalian development and prevalence of non-CpG methylation in oocytes. Development 138, 811–820 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Demond, H., Khan, S., Castillo-Fernandez, J., Hanna, C. W. & Kelsey, G. Transcriptome and DNA methylation profiling during the NSN to SN transition in mouse oocytes. BMC Mol. Cell Biol. 26, 2 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kubo, N. et al. Combined and differential roles of ADD domains of DNMT3A and DNMT3L on DNA methylation landscapes in mouse germ cells. Nat. Commun. 15, 3266 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yu, B. et al. Single-cell analysis of transcriptome and DNA methylome in human oocyte maturation. PLoS ONE 15, e0241698 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Castillo-Fernandez, J. et al. Increased transcriptome variation and localised DNA methylation changes in oocytes from aged mice revealed by parallel single-cell analysis. Aging Cell 19, e13278 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lee, J. H., Park, S. J. & Nakai, K. Differential landscape of non-CpG methylation in embryonic stem cells and neurons caused by DNMT3s. Sci. Rep. 7, 11295 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Jeltsch, A., Adam, S., Dukatz, M., Emperle, M. & Bashtrykov, P. Deep enzymology studies on DNA methyltransferases reveal novel connections between flanking sequences and enzyme activity. J. Mol. Biol. 433, 167186 (2021).

    Article  CAS  PubMed  Google Scholar 

  71. Baubec, T. et al. Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature 520, 243–247 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Neri, F. et al. Intragenic DNA methylation prevents spurious transcription initiation. Nature 543, 72–77 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Otani, J. et al. Structural basis for recognition of H3K4 methylation status by the DNA methyltransferase 3A ATRX–DNMT3–DNMT3L domain. EMBO Rep. 10, 1235–1241 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mo, A. et al. Epigenomic signatures of neuronal diversity in the mammalian brain. Neuron 86, 1369–1384 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Boxer, L. D. et al. MeCP2 represses the rate of transcriptional initiation of highly methylated long genes. Mol. Cell 77, 294–309 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Hamagami, N. et al. NSD1 deposits histone H3 lysine 36 dimethylation to pattern non-CG DNA methylation in neurons. Mol. Cell 83, 1412–1428 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Angeloni, A. et al. Extensive DNA methylome rearrangement during early lamprey embryogenesis. Nat. Commun. 15, 1977 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lagger, S. et al. MeCP2 recognizes cytosine methylated tri-nucleotide and di-nucleotide sequences to tune transcription in the mammalian brain. PLoS Genet. 13, e1006793 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Tillotson, R. & Bird, A. The molecular basis of MeCP2 function in the brain. J. Mol. Biol. 432, 1602–1623 (2019).

    Article  PubMed  Google Scholar 

  80. Skene, P. J. et al. Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol. Cell 37, 457–468 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rube, H. T. et al. Sequence features accurately predict genome-wide MeCP2 binding in vivo. Nat. Commun. 7, 11025 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Amir, R. E. et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet. 23, 185–188 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Lyst, M. J. et al. Rett syndrome mutations abolish the interaction of MeCP2 with the NCoR/SMRT co-repressor. Nat. Neurosci. 16, 898–902 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Tillotson, R. et al. Neuronal non-CG methylation is an essential target for MeCP2 function. Mol. Cell 81, 1260–1275 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lavery, L. A. et al. Losing Dnmt3a dependent methylation in inhibitory neurons impairs neural function by a mechanism impacting Rett syndrome. eLife 9, e52981 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Li, J. et al. Dnmt3a knockout in excitatory neurons impairs postnatal synapse maturation and increases the repressive histone modification H3K27me3. eLife 11, e66909 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fuks, F., Burgers, W. A., Godin, N., Kasai, M. & Kouzarides, T. Dnmt3a binds deacetylases and is recruited by a sequence-specific repressor to silence transcription. EMBO J. 20, 2536–2544 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Liu, Y. et al. Exploring the complexity of MECP2 function in Rett syndrome. Nat. Rev. Neurosci. 26, 379–398 (2025).

    Article  CAS  PubMed  Google Scholar 

  89. Renthal, W. et al. Characterization of human mosaic Rett syndrome brain tissue by single-nucleus RNA sequencing. Nat. Neurosci. 21, 1670–1679 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Santistevan, N. J., Ford, C. T., Gilsdorf, C. S. & Grinblat, Y. Behavioral and transcriptomic analyses of mecp2 function in zebrafish. Am. J. Med. Genet. B Neuropsychiatr. Genet. 195, e32981 (2024).

    Article  CAS  PubMed  Google Scholar 

  91. Moore, J. R. et al. MeCP2 and non-CG DNA methylation stabilize the expression of long genes that distinguish closely related neuron types. Nat. Neurosci. 28, 1185–1198 (2025).

    Article  CAS  PubMed  Google Scholar 

  92. Tian, W. et al. Single-cell DNA methylation and 3D genome architecture in the human brain. Science 382, eadf5357 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Liu, H. et al. Single-cell DNA methylome and 3D multi-omic atlas of the adult mouse brain. Nature 624, 366–377 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhou, J. et al. Human body single-cell atlas of 3D genome organization and DNA methylation. Preprint at bioRxiv https://doi.org/10.1101/2025.03.23.644697 (2025).

  95. Goll, M. G. & Halpern, M. E. DNA methylation in zebrafish. Prog. Mol. Biol. Transl. Sci. 101, 193–218 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yin, L. M., Schnoor, M. & Jun, C. D. Structural characteristics, binding partners and related diseases of the calponin homology (CH) domain. Front. Cell Dev. Biol. 8, 342 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Wu, S. F., Zhang, H. & Cairns, B. R. Genes for embryo development are packaged in blocks of multivalent chromatin in zebrafish sperm. Genome Res. 21, 578–589 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hong, Y. et al. Establishment of a normal medakafish spermatogonial cell line capable of sperm production in vitro. Proc. Natl Acad. Sci. USA 101, 8011–8016 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Harris, K. D., Lloyd, J. P. B., Domb, K., Zilberman, D. & Zemach, A. DNA methylation is maintained with high fidelity in the honey bee germline and exhibits global non-functional fluctuations during somatic development. Epigenetics Chromatin 12, 62 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Cingolani, P. et al. Intronic non-CG DNA hydroxymethylation and alternative mRNA splicing in honey bees. BMC Genomics 14, 666 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Royle, J. W., Hurwood, D., Sadowski, P. & Dudley, K. J. Non-CG DNA methylation marks the transition from pupa to adult in Helicoverpa armigera. Insect Mol. Biol. 33, 493–502 (2024).

    Article  CAS  PubMed  Google Scholar 

  102. Gu, Z. et al. Whole-genome bisulfite sequencing reveals the function of DNA methylation in the allotransplantation immunity of pearl oysters. Front. Immunol. 14, 1247544 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yang, Y., Zheng, Y., Sun, L. & Chen, M. Genome-wide DNA methylation signatures of sea cucumber Apostichopus japonicus during environmental induced aestivation. Genes (Basel) 11, 1020 (2020).

    Article  CAS  PubMed  Google Scholar 

  104. Song, X. et al. Genome-wide DNA methylomes from discrete developmental stages reveal the predominance of non-CpG methylation in Tribolium castaneum. DNA Res. 24, 445–457 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Schulz, N. K. E. et al. Dnmt1 has an essential function despite the absence of CpG DNA methylation in the red flour beetle Tribolium castaneum. Sci. Rep. 8, 16462 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  106. De Koning, A. P., Gu, W., Castoe, T. A., Batzer, M. A. & Pollock, D. D. Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet. 7, e1002384 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Howe, K. et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498–503 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Schartl, M. et al. The genomes of all lungfish inform on genome expansion and tetrapod evolution. Nature 634, 96–103 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Du, J., Johnson, L. M., Jacobsen, S. E. & Patel, D. J. DNA methylation pathways and their crosstalk with histone methylation. Nat. Rev. Mol. Cell Biol. 16, 519–532 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Gouil, Q. & Baulcombe, D. C. DNA methylation signatures of the plant chromomethyltransferases. PLoS Genet. 12, e1006526 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Stroud, H. et al. Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nat. Struct. Mol. Biol. 21, 64–72 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Kazazian, H. H. Jr Mobile elements: drivers of genome evolution. Science 303, 1626–1632 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Tooley, K. B. et al. Differential usage of DNA modifications in neurons, astrocytes, and microglia. Epigenetics Chromatin 16, 45 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Derks, M. F. et al. Gene and transposable element methylation in great tit (Parus major) brain and blood. BMC Genomics 17, 332 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Muotri, A. R. et al. L1 retrotransposition in neurons is modulated by MeCP2. Nature 468, 443–446 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Novo, C. L. et al. Satellite repeat transcripts modulate heterochromatin condensates and safeguard chromosome stability in mouse embryonic stem cells. Nat. Commun. 13, 3525 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Guo, W., Zhang, M. Q. & Wu, H. Mammalian non-CG methylations are conserved and cell-type specific and may have been involved in the evolution of transposon elements. Sci. Rep. 6, 32207 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Olova, N. et al. Comparison of whole-genome bisulfite sequencing library preparation strategies identifies sources of biases affecting DNA methylation data. Genome Biol. 19, 33 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Vaisvila, R. et al. Enzymatic methyl sequencing detects DNA methylation at single-base resolution from picograms of DNA. Genome Res. 31, 1280–1289 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Liu, Y. et al. Bisulfite-free direct detection of 5-methylcytosine and 5-hydroxymethylcytosine at base resolution. Nat. Biotechnol. 37, 424–429 (2019).

    Article  CAS  PubMed  Google Scholar 

  121. Wang, M. et al. Engineered APOBEC3C sequencing enables bisulfite-free and direct detection of DNA methylation at a single-base resolution. Anal. Chem. 95, 1556–1565 (2023).

    CAS  PubMed  Google Scholar 

  122. Wang, T. et al. Bisulfite-free sequencing of 5-hydroxymethylcytosine with APOBEC-coupled epigenetic sequencing (ACE-seq). Methods Mol. Biol. 2198, 349–367 (2021).

    Article  CAS  PubMed  Google Scholar 

  123. Han, Y. et al. Comparison of EM-seq and PBAT methylome library methods for low-input DNA. Epigenetics 17, 1195–1204 (2022).

    Article  PubMed  Google Scholar 

  124. Liu, Y. et al. DNA methylation-calling tools for Oxford Nanopore sequencing: a survey and human epigenome-wide evaluation. Genome Biol. 22, 295 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Angeloni, A., Ferguson, J. & Bogdanovic, O. Nanopore sequencing and data analysis for base-resolution genome-wide 5-methylcytosine profiling. Methods Mol. Biol. 2458, 75–94 (2022).

    Article  CAS  PubMed  Google Scholar 

  126. Goldsmith, C. et al. Low biological fluctuation of mitochondrial CpG and non-CpG methylation at the single-molecule level. Sci. Rep. 11, 8032 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Liau, Y. et al. Low-pass nanopore sequencing for measurement of global methylation levels in plants. BMC Genomics 25, 1235 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kong, Y. et al. Critical assessment of nanopore sequencing for the detection of multiple forms of DNA modifications. Preprint at bioRxiv https://doi.org/10.1101/2024.11.19.624260 (2024).

  129. Ni, P. et al. Genome-wide detection of cytosine methylations in plant from Nanopore data using deep learning. Nat. Commun. 12, 5976 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Chen, H. X. et al. Accurate cross-species 5mC detection for Oxford Nanopore sequencing in plants with DeepPlant. Nat. Commun. 16, 3227 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Holmes, E. E. et al. Performance evaluation of kits for bisulfite-conversion of DNA from tissues, cell lines, FFPE tissues, aspirates, lavages, effusions, plasma, serum, and urine. PLoS ONE 9, e93933 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Hong, E. E., Okitsu, C. Y., Smith, A. D. & Hsieh, C. L. Regionally specific and genome-wide analyses conclusively demonstrate the absence of CpG methylation in human mitochondrial DNA. Mol. Cell. Biol. 33, 2683–2690 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kint, S., De Spiegelaere, W., De Kesel, J., Vandekerckhove, L. & Van Criekinge, W. Evaluation of bisulfite kits for DNA methylation profiling in terms of DNA fragmentation and DNA recovery using digital PCR. PLoS ONE 13, e0199091 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Dou, X. et al. The strand-biased mitochondrial DNA methylome and its regulation by DNMT3A. Genome Res. 29, 1622–1634 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Guitton, R., Nido, G. S. & Tzoulis, C. No evidence of extensive non-CpG methylation in mtDNA. Nucleic Acids Res. 50, 9190–9194 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Urich, M. A., Nery, J. R., Lister, R., Schmitz, R. J. & Ecker, J. R. MethylC-seq library preparation for base-resolution whole-genome bisulfite sequencing. Nat. Protoc. 10, 475–483 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Gong, W. et al. Benchmarking DNA methylation analysis of 14 alignment algorithms for whole genome bisulfite sequencing in mammals. Comput Struct. Biotechnol. J. 20, 4704–4716 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Treangen, T. J. & Salzberg, S. L. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat. Rev. Genet. 13, 36–46 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Teissandier, A., Servant, N., Barillot, E. & Bourc’his, D. Tools and best practices for retrotransposon analysis using high-throughput sequencing data. Mob. DNA 10, 52 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Mizuguchi, T. et al. Detecting a long insertion variant in SAMD12 by SMRT sequencing: implications of long-read whole-genome sequencing for repeat expansion diseases. J. Hum. Genet. 64, 191–197 (2019).

    Article  CAS  PubMed  Google Scholar 

  141. Stevanovski, I. et al. Comprehensive genetic diagnosis of tandem repeat expansion disorders with programmable targeted nanopore sequencing. Sci. Adv. 8, eabm5386 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Karst, S. M. et al. High-accuracy long-read amplicon sequences using unique molecular identifiers with Nanopore or PacBio sequencing. Nat. Methods 18, 165–169 (2021).

    Article  CAS  PubMed  Google Scholar 

  143. Delahaye, C. & Nicolas, J. Sequencing DNA with nanopores: troubles and biases. PLoS ONE 16, e0257521 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Catoni, M., Tsang, J. M., Greco, A. P. & Zabet, N. R. DMRcaller: a versatile R/Bioconductor package for detection and visualization of differentially methylated regions in CpG and non-CpG contexts. Nucleic Acids Res. 46, e114 (2018).

    PubMed  PubMed Central  Google Scholar 

  145. Ma, H. et al. Abnormalities in human pluripotent cells due to reprogramming mechanisms. Nature 511, 177–183 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Tatton-Brown, K. et al. Mutations in the DNA methyltransferase gene DNMT3A cause an overgrowth syndrome with intellectual disability. Nat. Genet. 46, 385–388 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Cree, S. L. et al. DNA G-quadruplexes show strong interaction with DNA methyltransferases in vitro. FEBS Lett. 590, 2870–2883 (2016).

    Article  CAS  PubMed  Google Scholar 

  148. Jin, J. et al. The effects of cytosine methylation on general transcription factors. Sci. Rep. 6, 29119 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Abhishek, S., Nakarakanti, N. K., Deeksha, W. & Rajakumara, E. Mechanistic insights into recognition of symmetric methylated cytosines in CpG and non-CpG DNA by UHRF1 SRA. Int. J. Biol. Macromol. 170, 514–522 (2021).

    Article  CAS  PubMed  Google Scholar 

  150. Spruijt, C. G. et al. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 152, 1146–1159 (2013).

    Article  CAS  PubMed  Google Scholar 

  151. Roth, G. V., Gengaro, I. R. & Qi, L. S. Precision epigenetic editing: technological advances, enduring challenges, and therapeutic applications. Cell Chem. Biol. https://doi.org/10.1016/j.chembiol.2024.07.007 (2024).

  152. Zemach, A., McDaniel, I. E., Silva, P. & Zilberman, D. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328, 916–919 (2010).

    Article  CAS  PubMed  Google Scholar 

  153. Domb, K. et al. DNA methylation mutants in Physcomitrella patens elucidate individual roles of CG and non-CG methylation in genome regulation. Proc. Natl Acad. Sci. USA 117, 33700–33710 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Yaari, R. et al. RdDM-independent de novo and heterochromatin DNA methylation by plant CMT and DNMT3 orthologs. Nat. Commun. 10, 1613 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Ikeda, Y. et al. Loss of CG methylation in Marchantia polymorpha causes disorganization of cell division and reveals unique DNA methylation regulatory mechanisms of non-CG methylation. Plant Cell Physiol. 59, 2421–2431 (2018).

    CAS  PubMed  Google Scholar 

  156. Zemach, A. et al. The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 153, 193–205 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Law, J. A. & Jacobsen, S. E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 11, 204–220 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Bewick, A. J. et al. Diversity of cytosine methylation across the fungal tree of life. Nat. Ecol. Evol. 3, 479–490 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Shi, J. et al. DNA methylation plays important roles in lifestyle transition of Arthrobotrys oligospora. IET Syst. Biol. 18, 92–102 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Nai, Y. S., Huang, Y. C., Yen, M. R. & Chen, P. Y. Diversity of fungal DNA methyltransferases and their association with DNA methylation patterns. Front. Microbiol. 11, 616922 (2020).

    Article  PubMed  Google Scholar 

  161. Chen, Y. Y. et al. DNA methylation-dependent epigenetic regulation of Verticillium dahliae virulence in plants. aBIOTECH 4, 185–201 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. So, K. K. et al. Global DNA methylation in the chestnut blight fungus Cryphonectria parasitica and genome-wide changes in DNA methylation accompanied with sectorization. Front. Plant Sci. 9, 103 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Malagnac, F. et al. A gene essential for de novo methylation and development in Ascobolus reveals a novel type of eukaryotic DNA methyltransferase structure. Cell 91, 281–290 (1997).

    Article  CAS  PubMed  Google Scholar 

  164. Sarre, L. A., Gastellou Peralta, G. A., Romero Charria, P., Ovchinnikov, V. & de Mendoza, A. Repressive cytosine methylation is a marker of viral gene transfer across divergent eukaryotes. Mol. Biol. Evol. 42, msaf176 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. De Mendoza, A. et al. Recurrent acquisition of cytosine methyltransferases into eukaryotic retrotransposons. Nat. Commun. 9, 1341 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Sarre, L. A. et al. DNA methylation enables recurrent endogenization of giant viruses in an animal relative. Sci. Adv. 10, eado6406 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Huff, J. T. & Zilberman, D. Dnmt1-independent CG methylation contributes to nucleosome positioning in diverse eukaryotes. Cell 156, 1286–1297 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Clark, S. J., Harrison, J., Paul, C. L. & Frommer, M. High sensitivity mapping of methylated cytosines. Nucleic Acids Res. 22, 2990–2997 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Tse, O. Y. O. et al. Genome-wide detection of cytosine methylation by single molecule real-time sequencing. Proc. Natl Acad. Sci. USA 118, e2019768118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Wang, Y., Zhao, Y., Bollas, A., Wang, Y. & Au, K. F. Nanopore sequencing technology, bioinformatics and applications. Nat. Biotechnol. 39, 1348–1365 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Kulkarni, O. et al. Comprehensive benchmarking of tools for nanopore-based detection of DNA methylation. Preprint at bioRxiv https://doi.org/10.1101/2024.11.09.622763 (2024).

Download references

Acknowledgements

This work was supported by the Spanish Ministry of Science (projects CNS2023-144039 and PID2021-128358NA-I00), as well as by funding from the Unit of Excellence María de Maeztu (CEX2020-001088-M to O.B.). A.d.M. was supported by the European Research Council Starting Grant 950230.

Author information

Authors and Affiliations

Authors

Contributions

O.B. conceptualized the work with the help of A.d.M. T.B. and O.B. wrote the original draft of the manuscript. O.B. T.B. and A.d.M. created Figs. 14. All authors critically reviewed and edited the manuscript.

Corresponding authors

Correspondence to Alex de Mendoza or Ozren Bogdanovic.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Maxim Greenberg and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Tables

Supplementary Tables 1 and 2.

Source data

Source Data Figs. 1 and 2

Source data for Figs. 1c and 2b,c.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brethouwer, T., de Mendoza, A. & Bogdanovic, O. Non-CG DNA methylation in animal genomes. Nat Genet 57, 2395–2407 (2025). https://doi.org/10.1038/s41588-025-02303-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41588-025-02303-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载